RESUMEN
Altered river flows and fragmented habitats often simplify riverine communities and favor non-native fishes, but their influence on life-history expression and survival is less clear. Here, we quantified the expression and ultimate success of diverse salmon emigration behaviors in an anthropogenically altered California river system. We analyzed two decades of Chinook salmon monitoring data to explore the influence of regulated flows on juvenile emigration phenology, abundance, and recruitment. We then followed seven cohorts into adulthood using otolith (ear stone) chemical archives to identify patterns in time- and size-selective mortality along the migratory corridor. Suppressed winter flow cues were associated with delayed emigration timing, particularly in warm, dry years, which was also when selection against late migrants was the most extreme. Lower, less variable flows were also associated with reduced juvenile and adult production, highlighting the importance of streamflow for cohort success in these southernmost populations. While most juveniles emigrated from the natal stream as fry or smolts, the survivors were dominated by the rare few that left at intermediate sizes and times, coinciding with managed flows released before extreme summer temperatures. The consistent selection against early (small) and late (large) migrants counters prevailing ecological theory that predicts different traits to be favored under varying environmental conditions. Yet, even with this weakened portfolio, maintaining a broad distribution in migration traits still increased adult production and reduced variance. In years exhibiting large fry pulses, even marginal increases in their survival would have significantly boosted recruitment. However, management actions favoring any single phenotype could have negative evolutionary and demographic consequences, potentially reducing adaptability and population stability. To recover fish populations and support viable fisheries in a warming and increasingly unpredictable climate, coordinating flow and habitat management within and among watersheds will be critical to balance trait optimization versus diversification.
Asunto(s)
Ecosistema , Salmón , Migración Animal , Animales , California , Cambio Climático , RíosRESUMEN
Mass mortality events (MMEs) are rapidly occurring catastrophic demographic events that punctuate background mortality levels. Individual MMEs are staggering in their observed magnitude: removing more than 90% of a population, resulting in the death of more than a billion individuals, or producing 700 million tons of dead biomass in a single event. Despite extensive documentation of individual MMEs, we have no understanding of the major features characterizing the occurrence and magnitude of MMEs, their causes, or trends through time. Thus, no framework exists for contextualizing MMEs in the wake of ongoing global and regional perturbations to natural systems. Here we present an analysis of 727 published MMEs from across the globe, affecting 2,407 animal populations. We show that the magnitude of MMEs has been intensifying for birds, fishes, and marine invertebrates; invariant for mammals; and decreasing for reptiles and amphibians. These shifts in magnitude proved robust when we accounted for an increase in the occurrence of MMEs since 1940. However, it remains unclear whether the increase in the occurrence of MMEs represents a true pattern or simply a perceived increase. Regardless, the increase in MMEs appears to be associated with a rise in disease emergence, biotoxicity, and events produced by multiple interacting stressors, yet temporal trends in MME causes varied among taxa and may be associated with increased detectability. In addition, MMEs with the largest magnitudes were those that resulted from multiple stressors, starvation, and disease. These results advance our understanding of rare demographic processes and their relationship to global and regional perturbations to natural systems.
Asunto(s)
Biomasa , Extinción Biológica , Modelos Biológicos , AnimalesRESUMEN
Anthropogenic disturbance of wildlife is of growing conservation concern, but we lack comprehensive approaches of its multiple negative effects. We investigated several effects of disturbance by winter outdoor sports on free-ranging alpine Black Grouse by simultaneously measuring their physiological and behavioral responses. We experimentally flushed radio-tagged Black Grouse from their snow burrows, once a day, during several successive days, and quantified their stress hormone levels (corticosterone metabolites in feces [FCM] collected. from individual snow burrows). We also measured feeding time allocation (activity budgets reconstructed from radio-emitted signals) in response to anthropogenic disturbance. Finally, we estimated the related extra energy expenditure that may be incurred: based on activity budgets, energy expenditure was modeled from measures of metabolism obtained from captive birds subjected to different ambient temperatures. The pattern of FCM excretion indicated the existence of a funneling effect as predicted by the allostatic theory of stress: initial stress hormone concentrations showed a wide inter-individual variation, which decreased during experimental flushing. Individuals with low initial pre-flushing FCM values augmented their concentration, while individuals with high initial FCM values lowered it. Experimental disturbance resulted in an extension of feeding duration during the following evening foraging bout, confirming the prediction that Black Grouse must compensate for the extra energy expenditure elicited by human disturbance. Birds with low initial baseline FCM concentrations were those that spent more time foraging. These FCM excretion and foraging patterns suggest that birds with high initial FCM concentrations might have been experiencing a situation of allostatic overload. The energetic model provides quantitative estimates of extra energy expenditure. A longer exposure to ambient temperatures outside the shelter of snow burrows, following disturbance, could increase the daily energy expenditure by > 10%, depending principally on ambient temperature and duration of exposure. This study confirms the predictions of allostatic theory and, to the best of our knowledge, constitutes the first demonstration of a funneling effect. It further establishes that winter recreation activities incur costly allostatic behavioral and energetic adjustments, which call for the creation of winter refuge areas together with the implementation of visitor-steering measures for sensitive wildlife.
Asunto(s)
Galliformes/fisiología , Recreación , Estaciones del Año , Estrés Fisiológico/fisiología , Animales , Conservación de los Recursos Naturales , Metabolismo Energético , Monitoreo del Ambiente , Humanos , Factores de TiempoRESUMEN
BACKGROUND: Smokers have a lower body weight compared to non-smokers. Smoking cessation is associated with weight gain in most cases. A hormonal mechanism of action might be implicated in weight variations related to smoking, and leptin might be implicated. We made secondary analyses of an RCT, with a hypothesis-free exploratory approach to study the dynamic of leptin following smoking cessation. METHODS: We measured serum leptin levels among 271 sedentary smokers willing to quit who participated in a randomized controlled trial assessing a 9-week moderate-intensity physical activity intervention as an aid for smoking cessation. We adjusted leptin for body fat levels. We performed linear regressions to test for an association between leptin levels and the study group over time. RESULTS: One year after smoking cessation, the mean serum leptin change was +3.23 mg/l (SD 4.89) in the control group and +1.25 mg/l (SD 4.86) in the intervention group (p of the difference < 0.05). When adjusted for body fat levels, leptin was higher in the control group than in the intervention group (p of the difference < 0.01). The mean weight gain was +2.91 (SD 6.66) Kg in the intervention and +3.33 (SD 4.47) Kg in the control groups, respectively (p not significant). CONCLUSIONS: Serum leptin levels significantly increased after smoking cessation, in spite of substantial weight gain. The leptin dynamic might be different in chronic tobacco users who quit smoking, and physical activity might impact the dynamic of leptin in such a situation. Clinical trial registration number: NCT00521391.
Asunto(s)
Ejercicio Físico/fisiología , Leptina/sangre , Cese del Hábito de Fumar/métodos , Cese del Hábito de Fumar/estadística & datos numéricos , Adulto , Biomarcadores/sangre , Peso Corporal/fisiología , Femenino , Humanos , Masculino , Proyectos de Investigación , Aumento de Peso/fisiologíaRESUMEN
Nutrition has powerful impacts on our health and longevity. One of the mechanisms by which nutrition might influence our health is by inducing epigenetic modifications, modulating the molecular mechanisms that regulate aging. Observational studies have provided evidence of a relationship between nutrition and differences in DNA methylation. However, these studies are limited in that they might not provide an accurate control of the interactions between different nutrients, or between nutrition and other lifestyle behaviors. Here we systematically reviewed clinical studies examining the impact of nutrition strategies on DNA methylation. We examined clinical studies in community-dwelling adults testing the effects of nutrition interventions on i) global DNA methylation and its proxies, and ii) epigenetic clocks. We included 21 intervention studies that focused on the effects of healthy nutrition patterns, specific foods or nutrients, as well as the effect of multivitamin or multimineral supplements. In four studies on the methylation effects of healthy dietary patterns, as defined by being rich in vegetables, fruits, whole-grains, and nuts and reduced in the intake of added sugars, saturated fat, and alcohol, two of them suggested that a healthy diet, is associated with lower epigenetic age acceleration, one of them reported increases in global DNA methylation, while another one found no diet effects. Studies examining epigenetic effects of specific foods, nutrients, or mixtures of nutrients were scarce. For both folic acid and polyunsaturated fatty acids, the available independent studies produced conflicting findings. Although more evidence is still needed to draw firm conclusions, results begin to suggest that healthy dietary patterns have positive effects on DNA methylation. Additional evidence from large randomized-controlled clinical trials is needed to support the effects of healthy nutrition on the DNA methylome.
RESUMEN
BACKGROUND: Epigenetic modifications may contribute to inter-individual variation that is unexplainable by presently known risk factors for COVID-19 severity (e.g., age, excess weight, or other health conditions). Estimates of youth capital (YC) reflect the difference between an individual's epigenetic - or biological - age and chronological age, and may quantify abnormal aging due to lifestyle or other environmental exposures, providing insights that could inform risk-stratification for severe COVID-19 outcomes. This study aims to thereby a) assess the association between YC and epigenetic signatures of lifestyle exposures with COVID-19 severity, and b) to assess whether the inclusion of these signatures in addition to a signature of COVID-19 severity (EPICOVID) improved the prediction of COVID-19 severity. METHODS: This study uses data from two publicly-available studies accessed via the Gene Expression Omnibus (GEO) platform (accession references: GSE168739 and GSE174818). The GSE168739 is a retrospective, cross-sectional study of 407 individuals with confirmed COVID-19 across 14 hospitals in Spain, while the GSE174818 sample is a single-center observational study of individuals admitted to the hospital for COVID-19 symptoms (n = 102). YC was estimated using the (a) Gonseth-Nusslé, (b) Horvath, (c) Hannum, and (d) PhenoAge estimates of epigenetic age. Study-specific definitions of COVID-19 severity were used, including hospitalization status (yes/no) (GSE168739) or vital status at the end of follow-up (alive/dead) (GSE174818). Logistic regression models were used to assess the association between YC, lifestyle exposures, and COVID-19 severity. RESULTS: Higher YC as estimated using the Gonseth-Nusslé, Hannum and PhenoAge measures was associated with reduced odds of severe symptoms (OR = 0.95, 95% CI = 0.91-1.00; OR = 0.81, 95% CI = 0.75 - 0.86; and OR = 0.85, 95% CI = 0.81-0.88, respectively) (adjusting for chronological age and sex). In contrast, a one-unit increase in the epigenetic signature for alcohol consumption was associated with 13% increased odds of severe symptoms (OR = 1.13, 95% CI = 1.05-1.23). Compared to the model including only age, sex and the EPICOVID signature, the additional inclusion of PhenoAge and the epigenetic signature for alcohol consumption improved the prediction of COVID-19 severity (AUC = 0.94, 95% CI = 0.91-0.96 versus AUC = 0.95, 95% CI = 0.93-0.97; p = 0.01). In the GSE174818 sample, only PhenoAge was associated with COVID-related mortality (OR = 0.93, 95% CI = 0.87-1.00) (adjusting for age, sex, BMI and Charlson comorbidity index). CONCLUSIONS: Epigenetic age is a potentially useful tool in primary prevention, particularly as an incentive towards lifestyle changes that target reducing the risk of severe COVID-19 symptoms. However, additional research is needed to establish potential causal pathways and the directionality of this effect.
Asunto(s)
COVID-19 , Adolescente , Humanos , COVID-19/genética , Estudios Retrospectivos , Acceso a la Información , Estudios Transversales , Epigénesis GenéticaRESUMEN
Across the lifespan, the human body and brain endure the impact of a plethora of exogenous and endogenous factors that determine the health outcome in old age. The overwhelming inter-individual variance spans between progressive frailty with loss of autonomy to largely preserved physical, cognitive, and social functions. Understanding the mechanisms underlying the diverse aging trajectories can inform future strategies to maintain a healthy body and brain. Here we provide a comprehensive overview of the current literature on lifetime factors governing brain health. We present the growing body of evidence that unhealthy alimentary regime, sedentary behaviour, sleep pathologies, cardio-vascular risk factors, and chronic inflammation exert their harmful effects in a cumulative and gradual manner, and that timely and efficient intervention could promote healthy and successful aging. We discuss the main effects and interactions between these risk factors and the resulting brain health outcomes to follow with a description of current strategies aiming to eliminate, treat, or counteract the risk factors. We conclude that the detailed insights about modifiable risk factors could inform personalized multi-domain strategies for brain health maintenance on the background of increased longevity.
Asunto(s)
Encéfalo , Longevidad , Humanos , Envejecimiento , Factores de Riesgo , Conducta SedentariaRESUMEN
BACKGROUND: Smoking and alcohol consumption may compromise health by way of epigenetic modifications. Epigenetic signatures of alcohol and tobacco consumption could provide insights into the reversibility of phenotypic changes incurred with differing levels of lifestyle exposures. This study describes and validates two novel epigenetic signatures of tobacco (EpiTob) and alcohol (EpiAlc) consumption and investigates their association with disease outcomes. METHODS: The epigenetic signatures, EpiTob and EpiAlc, were developed using data from the Swiss Kidney Project on Genes in Hypertension (SKIPOGH) (N = 689). Epigenetic and phenotypic data available from the 1921 (N = 550) and 1936 (N = 1091) Lothian Birth Cohort (LBC) studies, and two publicly available datasets on GEO Accession (GSE50660, N = 464; and GSE110043, N = 94) were used to validate the signatures. A multivariable logistic regression model, adjusting for age and sex, was used to assess the association between self-reported tobacco or alcohol consumption and the respective epigenetic signature, as well as to estimate the association between CVD and epigenetic signatures. A Cox proportional hazard model was used to estimate the risk of mortality in association with the EpiTob and EpiAlc signatures. RESULTS: The EpiTob signature was positively associated with self-reported tobacco consumption for current or never smokers with explained variance ranging from 0.49 (LBC1921) to 0.72 (LBC1936) (pseudo-R2). In the SKIPOGH, LBC1921 and LBC1936 cohorts, the epigenetic signature for alcohol consumption explained limited variance in association with self-reported alcohol status [i.e., non-drinker, moderate drinker, and heavy drinker] (pseudo-R2 = 0.05, 0.03 and 0.03, respectively), although this improved considerably when measuring self-reported alcohol consumption with standardized units consumed per week (SKIPOGH R2 = 0.21; LBC1921 R2 = 0.31; LBC1936 R2 = 0.41). Both signatures were associated with history of CVD in SKIPOGH and LBC1936, but not in LBC1921. The EpiTob signature was associated with increased risk of all-cause and lung-cancer specific mortality in the 1936 and 1921 LBC cohorts. CONCLUSIONS: This study found the EpiTob and EpiAlc signatures to be well-correlated with self-reported exposure status and associated with long-term health outcomes. Epigenetic signatures of lifestyle exposures may reduce measurement issues and biases and could aid in risk stratification for informing early-stage targeted interventions.
Asunto(s)
Enfermedades Cardiovasculares , Nicotiana , Humanos , Metilación de ADN , Uso de Tabaco/efectos adversos , Uso de Tabaco/genética , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/genética , Estilo de Vida , EtanolRESUMEN
'Good-genes' models of sexual selection predict significant additive genetic variation for fitness-correlated traits within populations to be revealed by phenotypic traits. To test this prediction, we sampled brown trout (Salmo trutta) from their natural spawning place, analysed their carotenoid-based red and melanin-based dark skin colours and tested whether these colours can be used to predict offspring viability. We produced half-sib families by in vitro fertilization, reared the resulting embryos under standardized conditions, released the hatchlings into a streamlet and identified the surviving juveniles 20 months later with microsatellite markers. Embryo viability was revealed by the sires' dark pigmentation: darker males sired more viable offspring. However, the sires' red coloration correlated negatively with embryo survival. Our study demonstrates that genetic variation for fitness-correlated traits is revealed by male colour traits in our study population, but contrary to predictions from other studies, intense red colours do not signal good genes.
Asunto(s)
Carotenoides/fisiología , Melaninas/fisiología , Pigmentación/fisiología , Trucha/embriología , Animales , Femenino , Variación Genética , Masculino , Estadísticas no Paramétricas , Trucha/genética , Trucha/crecimiento & desarrolloRESUMEN
The aim of the present study was to determinate the cycle length of spermatogenesis in three species of shrew, Suncus murinus, Sorex coronatus and Sorex minutus, and to assess the relative influence of variation in basal metabolic rate (BMR) and mating system (level of sperm competition) on the observed rate of spermatogenesis, including data of shrew species studied before (Sorex araneus, Crocidura russula and Neomys fodiens). The dynamics of sperm production were determined by tracing 5-bromodeoxyuridine in the DNA of germ cells. As a continuous scaling of mating systems is not evident, the level of sperm competition was evaluated by the significantly correlated relative testis size (RTS). The cycle durations estimated by linear regression were 14.3 days (RTS 0.3%) in Suncus murinus, 9.0 days (RTS 0.5%) in Sorex coronatus and 8.5 days (RTS 2.8%) in Sorex minutus. In regression and multiple regression analyses including all six studied species of shrew, cycle length was significantly correlated with BMR (r2=0.73) and RTS (r2=0.77). Sperm competition as an ultimate factor obviously leads to a reduction in the time of spermatogenesis in order to increase sperm production. BMR may act in the same way, independently or as a proximate factor, revealed by the covariation, but other factors (related to testes size and thus to mating system) may also be involved.
Asunto(s)
Metabolismo Basal , Musarañas/fisiología , Espermatogénesis/fisiología , Testículo/anatomía & histología , Animales , Masculino , Tamaño de los ÓrganosRESUMEN
Recently, we examined the spermatogenesis cycle length in two shrews species, Sorex araneus characterized by a very high metabolic rate and a polyandric mating system (sperm competition) resulting in a short cycle and Crocidura russula characterized by a much lower metabolic rate and a monogamous mating system showing a longer cycle. In this study, we investigated the spermatogenesis cycle in Neomys fodiens showing an intermediate metabolic rate. We described the stages of seminiferous epithelium according to the spermatid morphology method and we calculated the cycle length of spermatogenesis using incorporation of 5-bromodeoxyuridine into DNA of the germ cells. Twelve males were injected intraperitoneally with 5-bromodeoxyuridine, and the testes were collected. For cycle length determination, we applied a recently developed statistical method. The calculated cycle length is 8.69 days and the total duration of spermatogenesis based on 4.5 cycles is approximately 39.1 days, intermediate between the duration of spermatogenesis of S. araneus (37.6 days) and C. russula (54.5 days) and therefore congruent with both the metabolic rate hypothesis and the sperm competition hypothesis. Relative testes size of 1.4% of body mass indicates a promiscuous mating system.
Asunto(s)
Epitelio Seminífero/citología , Epitelio Seminífero/fisiología , Musarañas/fisiología , Espermatogénesis/fisiología , Animales , Inmunohistoquímica , Masculino , Factores de TiempoRESUMEN
Wind turbines represent a source of hazard for bats, especially through collision with rotor blades. With increasing technical development, tall turbines (rotor-swept zone 50-150 m above ground level) are becoming widespread, yet we lack quantitative information about species active at these heights, which impedes proposing targeted mitigation recommendations for bat-friendly turbine operation. We investigated vertical activity profiles of a bat assemblage, and their relationships to wind speed, within a major valley of the European Alps where tall wind turbines are being deployed. To monitor bat activity we installed automatic recorders at sequentially increasing heights from ground level up to 65 m, with the goal to determine species-specific vertical activity profiles and to link them to wind speed. Bat call sequences were analysed with an automatic algorithm, paying particular attention to mouse-eared bats (Myotis myotis and Myotis blythii) and the European free-tailed bat (Tadarida teniotis), three locally rare species. The most often recorded bats were the Common pipistrelle (Pipistrellus pipistrellus) and Savi's pipistrelle (Hypsugo savii). Mouse-eared bats were rarely recorded, and mostly just above ground, appearing out of risk of collision. T. teniotis had a more evenly distributed vertical activity profile, often being active at rotor level, but its activity at that height ceased above 5 ms-1 wind speed. Overall bat activity in the rotor-swept zone declined with increasing wind speed, dropping below 5% above 5.4 ms-1. Collision risk could be drastically reduced if nocturnal operation of tall wind turbines would be restricted to wind speeds above 5 ms-1. Such measure should be implemented year-round because T. teniotis remains active in winter. This operational restriction is likely to cause only small energy production losses at these tall wind turbines, although further analyses are needed to assess these losses precisely.
Asunto(s)
Algoritmos , Quirópteros , Modelos Biológicos , Energía Renovable , Viento , Animales , Europa (Continente)RESUMEN
BACKGROUND: Males that are successful in intra-sexual competition are often assumed to be of superior quality. In the mating system of most salmonid species, intensive dominance fights are common and the winners monopolise most mates and sire most offspring. We drew a random sample of mature male brown trout (Salmo trutta) from two wild populations and determined their dominance hierarchy or traits linked to dominance. The fish were then stripped and their sperm was used for in vitro fertilisations in two full-factorial breeding designs. We recorded embryo viability until hatching in both experiments, and juvenile survival during 20 months after release into a natural streamlet in the second experiment. Since offspring of brown trout get only genes from their fathers, we used offspring survival as a quality measure to test (i) whether males differ in their genetic quality, and if so, (ii) whether dominance or traits linked to dominance reveal 'good genes'. RESULTS: We found significant additive genetic variance on embryo survival, i.e. males differed in their genetic quality. Older, heavier and larger males were more successful in intra-sexual selection. However, neither dominance nor dominance indicators like body length, weight or age were significantly linked to genetic quality measured as embryo or juvenile survival. CONCLUSION: We found no evidence that females can improve their offspring's genetic viability by mating with large and dominant males. If there still were advantages of mating with dominant males, they may be linked to non-genetic benefits or to genetic advantages that are context dependent and therefore possibly not revealed under our experimental conditions - even if we found significant additive genetic variation for embryo viability under such conditions.
Asunto(s)
Tamaño Corporal , Predominio Social , Trucha/genética , Envejecimiento , Animales , Femenino , Masculino , Reproducción , Trucha/anatomía & histologíaRESUMEN
The potential for evolution to influence fishery sustainability remains a controversial topic. We highlight new modeling research from Dunlop et al. that explores when and how fisheries-induced evolution matters for population dynamics, while also emphasizing transient dynamics in population growth and life history-dependent responses that influence population stability and resiliency.
Asunto(s)
Explotaciones Pesqueras , Dinámica Poblacional , Crecimiento DemográficoRESUMEN
Rising temperatures due to climate change are pushing the thermal limits of many species, but how climate warming interacts with other anthropogenic disturbances such as land use remains poorly understood. To understand the interactive effects of climate warming and livestock grazing on water temperature in three high elevation meadow streams in the Golden Trout Wilderness, California, we measured riparian vegetation and monitored water temperature in three meadow streams between 2008 and 2013, including two "resting" meadows and one meadow that is partially grazed. All three meadows have been subject to grazing by cattle and sheep since the 1800s and their streams are home to the imperiled California golden trout (Oncorhynchus mykiss aguabonita). In 1991, a livestock exclosure was constructed in one of the meadows (Mulkey), leaving a portion of stream ungrazed to minimize the negative effects of cattle. In 2001, cattle were removed completely from two other meadows (Big Whitney and Ramshaw), which have been in a "resting" state since that time. Inside the livestock exclosure in Mulkey, we found that riverbank vegetation was both larger and denser than outside the exclosure where cattle were present, resulting in more shaded waters and cooler maximal temperatures inside the exclosure. In addition, between meadows comparisons showed that water temperatures were cooler in the ungrazed meadows compared to the grazed area in the partially grazed meadow. Finally, we found that predicted temperatures under different global warming scenarios were likely to be higher in presence of livestock grazing. Our results highlight that land use can interact with climate change to worsen the local thermal conditions for taxa on the edge and that protecting riparian vegetation is likely to increase the resiliency of these ecosystems to climate change.
Asunto(s)
Bovinos , Conservación de los Recursos Naturales , Calentamiento Global , Pradera , Ganado , Ríos , Ovinos , Animales , California , Bovinos/fisiología , Conservación de los Recursos Naturales/métodos , Ganado/fisiología , Ríos/química , Ovinos/fisiología , Temperatura , Trucha , Vida SilvestreRESUMEN
Folate deficiency during early embryonic development constitutes a risk factor for neural tube defects and potentially for childhood leukemia via unknown mechanisms. We tested whether folate consumption during the 12 months prior to conception induced DNA methylation modifications at birth in healthy neonates with a genome-wide and agnostic approach. We hypothesized that DNA methylation in genes involved in neural tube development and/or cancer susceptibility would be affected by folate exposure. We retrospectively assessed folate exposure at the time of conception by food-frequency questionnaires administered to the mothers of 343 healthy newborns. We measured genome-wide DNA methylation from neonatal blood spots. We implemented a method based on bootstrap resampling to decrease false-positive findings. Folate was inversely associated with DNA methylation throughout the genome. Among the top folate-associated genes that were replicated in an independent Gambian study were TFAP2A, a gene critical for neural crest development, STX11, a gene implicated in acute myeloid leukemia, and CYS1, a candidate gene for cystic kidney disease. Reduced periconceptional folate intake was associated with increased methylation and, in turn, decreased gene expression at these 3 loci. The top folate-sensitive genes defined by their associated CpG sites were enriched for numerous transcription factors by Gene Set Enrichment Analysis, including those implicated in cancer development (e.g., MYC-associated zinc finger protein). The influence of estimated periconceptional folate intake on neonatal DNA methylation levels provides potential mechanistic insights into the role of this vitamin in the development of neural tube defects and childhood cancers.
Asunto(s)
Metilación de ADN , Deficiencia de Ácido Fólico/genética , Ácido Fólico/farmacología , Regulación del Desarrollo de la Expresión Génica , Genes Relacionados con las Neoplasias , Cresta Neural/embriología , Suplementos Dietéticos , Epigenómica , Femenino , Fertilización , Humanos , Recién Nacido , Proteínas de la Membrana/genética , Cresta Neural/metabolismo , Defectos del Tubo Neural/genética , Embarazo , Efectos Tardíos de la Exposición Prenatal , Proteínas Qa-SNARE/genética , Estudios Retrospectivos , Factores de Tiempo , Factor de Transcripción AP-2/genéticaRESUMEN
Managing fisheries resources to maintain healthy ecosystems is one of the main goals of the ecosystem approach to fisheries (EAF). While a number of international treaties call for the implementation of EAF, there are still gaps in the underlying methodology. One aspect that has received substantial scientific attention recently is fisheries-induced evolution (FIE). Increasing evidence indicates that intensive fishing has the potential to exert strong directional selection on life-history traits, behaviour, physiology, and morphology of exploited fish. Of particular concern is that reversing evolutionary responses to fishing can be much more difficult than reversing demographic or phenotypically plastic responses. Furthermore, like climate change, multiple agents cause FIE, with effects accumulating over time. Consequently, FIE may alter the utility derived from fish stocks, which in turn can modify the monetary value living aquatic resources provide to society. Quantifying and predicting the evolutionary effects of fishing is therefore important for both ecological and economic reasons. An important reason this is not happening is the lack of an appropriate assessment framework. We therefore describe the evolutionary impact assessment (EvoIA) as a structured approach for assessing the evolutionary consequences of fishing and evaluating the predicted evolutionary outcomes of alternative management options. EvoIA can contribute to EAF by clarifying how evolution may alter stock properties and ecological relations, support the precautionary approach to fisheries management by addressing a previously overlooked source of uncertainty and risk, and thus contribute to sustainable fisheries.
RESUMEN
Size-selective fishing, environmental changes and reproductive strategies are expected to affect life-history traits such as the individual growth rate. The relative contribution of these factors is not clear, particularly whether size-selective fishing can have a substantial impact on the genetics and hence on the evolution of individual growth rates in wild populations. We analysed a 25-year monitoring survey of an isolated population of the Alpine whitefish Coregonus palaea. We determined the selection differentials on growth rate, the actual change of growth rate over time and indicators of reproductive strategies that may potentially change over time. The selection differential can be reliably estimated in our study population because almost all the fish are harvested within their first years of life, i.e. few fish escape fishing mortality. We found a marked decline in average adult growth rate over the 25 years and a significant selection differential for adult growth, but no evidence for any linear change in reproductive strategies over time. Assuming that the heritability of growth in this whitefish corresponds to what was found in other salmonids, about a third of the observed decline in growth rate would be linked to fishery-induced evolution. Size-selective fishing seems to affect substantially the genetics of individual growth in our study population.
RESUMEN
The aim of the present study was to establish and compare the durations of the seminiferous epithelium cycles of the common shrew Sorex araneus, which is characterized by a high metabolic rate and multiple paternity, and the greater white-toothed shrew Crocidura russula, which is characterized by a low metabolic rate and a monogamous mating system. Twelve S. araneus males and fifteen C. russula males were injected intraperitoneally with 5-bromodeoxyuridine, and the testes were collected. For cycle length determinations, we applied the classical method of estimation and linear regression as a new method. With regard to variance, and even with a relatively small sample size, the new method seems to be more precise. In addition, the regression method allows the inference of information for every animal tested, enabling comparisons of different factors with cycle lengths. Our results show that not only increased testis size leads to increased sperm production, but it also reduces the duration of spermatogenesis. The calculated cycle lengths were 8.35 days for S. araneus and 12.12 days for C. russula. The data obtained in the present study provide the basis for future investigations into the effects of metabolic rate and mating systems on the speed of spermatogenesis.