Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Anesthesiology ; 140(1): 73-84, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37815856

RESUMEN

BACKGROUND: Intraoperative alpha-band power in frontal electrodes may provide helpful information about the balance of hypnosis and analgesia and has been associated with reduced occurrence of delirium in the postanesthesia care unit. Recent studies suggest that narrow-band power computations from neural power spectra can benefit from separating periodic and aperiodic components of the electroencephalogram. This study investigates whether such techniques are more useful in separating patients with and without delirium in the postanesthesia care unit at the group level as opposed to conventional power spectra. METHODS: Intraoperative electroencephalography recordings of 32 patients who developed perioperative neurocognitive disorders and 137 patients who did not were considered in this post hoc secondary analysis. The power spectra were calculated using conventional methods and the "fitting oscillations and one over f" algorithm was applied to separate aperiodic and periodic components to see whether the electroencephalography signature is different between groups. RESULTS: At the group level, patients who did not develop perioperative neurocognitive disorders presented with significantly higher alpha-band power and a broadband increase in power, allowing a "fair" separation based on conventional power spectra. Within the first third of emergence, the difference in median absolute alpha-band power amounted to 8.53 decibels (area under the receiver operator characteristics curve, 0.74 [0.65; 0.82]), reaching its highest value. In relative terms, the best separation was achieved in the second third of emergence, with a difference in medians of 7.71% (area under the receiver operator characteristics curve, 0.70 [0.61; 0.79]). The area under the receiver operator characteristics curve values were generally lower toward the end of emergence with increasing arousal. CONCLUSIONS: Increased alpha-band power during emergence in patients who did not develop perioperative neurocognitive disorders can be traced back to an increase in oscillatory alpha activity and an overall increase in aperiodic broadband power. Although the differences between patients with and without perioperative neurocognitive disorders can be detected relying on traditional methods, the separation of the signal allows a more detailed analysis. This may enable clinicians to detect patients at risk for developing perioperative neurocognitive disorders in the postanesthesia care unit early in the emergence phase.


Asunto(s)
Delirio , Electroencefalografía , Humanos , Estudios Prospectivos , Electroencefalografía/métodos , Anestesia General/efectos adversos , Anestesia General/métodos , Delirio/diagnóstico , Delirio/psicología
2.
Neuroimage ; 270: 119981, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36848971

RESUMEN

Neural oscillations in distinct frequency bands are ubiquitous in the brain and play a role in many cognitive processes. The "communication by coherence" hypothesis, poses that the synchronization through phase coupling of frequency-specific neural oscillations regulate information flow across distribute brain regions. Specifically, the posterior alpha frequency band (7-12 Hz) is thought to gate bottom-up visual information flow by inhibition during visual processing. Evidence shows that increased alpha phase coherency positively correlates with functional connectivity in resting state connectivity networks, supporting alpha mediates neural communication through coherency. However, these findings have mainly been derived from spontaneous changes in the ongoing alpha rhythm. In this study, we experimentally modulate the alpha rhythm by targeting individuals' intrinsic alpha frequency with sustained rhythmic light to investigate alpha-mediated synchronous cortical activity in both EEG and fMRI. We hypothesize increased alpha coherency and fMRI connectivity should arise from modulation of the intrinsic alpha frequency (IAF) as opposed to control frequencies in the alpha range. Sustained rhythmic and arrhythmic stimulation at the IAF and at neighboring frequencies within the alpha band range (7-12 Hz) was implemented and assessed in a separate EEG and fMRI study. We observed increased cortical alpha phase coherency in the visual cortex during rhythmic stimulation at the IAF as in comparison to rhythmic stimulation of control frequencies. In the fMRI, we found increased functional connectivity for stimulation at the IAF in visual and parietal areas as compared to other rhythmic control frequencies by correlating time courses from a set of regions of interest for the different stimulation conditions and applying network-based statistics. This suggests that rhythmic stimulation at the IAF frequency induces a higher degree of synchronicity of neural activity across the occipital and parietal cortex, which supports the role of the alpha oscillation in gating information flow during visual processing.


Asunto(s)
Ritmo alfa , Imagen por Resonancia Magnética , Humanos , Estimulación Luminosa , Ritmo alfa/fisiología , Encéfalo/fisiología , Percepción Visual/fisiología , Electroencefalografía
3.
Inorg Chem ; 62(50): 20608-20620, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-36972174

RESUMEN

We have developed a diphosphine (DP) platform for radiolabeling peptides with 99mTc and 64Cu for molecular SPECT and PET imaging, respectively. Two diphosphines, 2,3-bis(diphenylphosphino)maleic anhydride (DPPh) and 2,3-bis(di-p-tolylphosphino)maleic anhydride (DPTol), were each reacted with a Prostate Specific Membrane Antigen-targeted dipeptide (PSMAt) to yield the bioconjugates DPPh-PSMAt and DPTol-PSMAt, as well as an integrin-targeted cyclic peptide, RGD, to yield the bioconjugates DPPh-RGD and DPTol-RGD. Each of these DP-PSMAt conjugates formed geometric cis/trans-[MO2(DPX-PSMAt)2]+ (M = 99mTc, 99gTc, natRe; X = Ph, Tol) complexes when reacted with [MO2]+ motifs. Furthermore, both DPPh-PSMAt and DPTol-PSMAt could be formulated into kits containing reducing agent and buffer components, enabling preparation of the new radiotracers cis/trans-[99mTcO2(DPPh-PSMAt)2]+ and cis/trans-[99mTcO2(DPTol-PSMAt)2]+ from aqueous 99mTcO4- in 81% and 88% radiochemical yield (RCY), respectively, in 5 min at 100 °C. The consistently higher RCYs observed for cis/trans-[99mTcO2(DPTol-PSMAt)2]+ are attributed to the increased reactivity of DPTol-PSMAt over DPPh-PSMAt. Both cis/trans-[99mTcO2(DPPh-PSMAt)2]+ and cis/trans-[99mTcO2(DPTol-PSMAt)2]+ exhibited high metabolic stability, and in vivo SPECT imaging in healthy mice revealed that both new radiotracers cleared rapidly from circulation, via a renal pathway. These new diphosphine bioconjugates also furnished [64Cu(DPX-PSMAt)2]+ (X = Ph, Tol) complexes rapidly, in a high RCY (>95%), under mild conditions. In summary, the new DP platform is versatile: it enables straightforward functionalization of targeting peptides with a diphosphine chelator, and the resulting bioconjugates can be simply radiolabeled with both the SPECT and PET radionuclides, 99mTc and 64Cu, in high RCYs. Furthermore, the DP platform is amenable to derivatization to either increase the chelator reactivity with metallic radioisotopes or, alternatively, modify the radiotracer hydrophilicity. Functionalized diphosphine chelators thus have the potential to provide access to new molecular radiotracers for receptor-targeted imaging.


Asunto(s)
Quelantes , Anhídridos Maleicos , Masculino , Ratones , Animales , Quelantes/química , Péptidos/química , Radioisótopos , Péptidos Cíclicos/química , Tomografía de Emisión de Positrones , Radiofármacos/química , Dipéptidos
4.
Inorg Chem ; 62(50): 20582-20592, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-36719138

RESUMEN

The ability to append targeting biomolecules to chelators that efficiently coordinate to the diagnostic imaging radionuclide, 99mTc, and the therapeutic radionuclide, 188Re, can potentially enable receptor-targeted "theranostic" treatment of disease. Here we show that Pt(0)-catalyzed hydrophosphination reactions are well-suited to the derivatization of diphosphines with biomolecular moieties enabling the efficient synthesis of ligands of the type Ph2PCH2CH2P(CH2CH2-Glc)2 (L, where Glc = a glucose moiety) using the readily accessible Ph2PCH2CH2PH2 and acryl derivatives. It is shown that hydrophosphination of an acrylate derivative of a deprotected glucose can be carried out in aqueous media. Furthermore, the resulting glucose-chelator conjugates can be radiolabeled with either 99mTc(V) or 188Re(V) in high radiochemical yields (>95%), to furnish separable mixtures of cis- and trans-[M(O)2L2]+ (M = Tc, Re). Single photon emission computed tomography (SPECT) imaging and ex vivo biodistribution in healthy mice show that each isomer possesses favorable pharmacokinetic properties, with rapid clearance from blood circulation via a renal pathway. Both cis-[99mTc(O)2L2]+ and trans-[99mTc(O)2L2]+ exhibit high stability in serum. This new class of functionalized diphosphine chelators has the potential to provide access to receptor-targeted dual diagnostic/therapeutic pairs of radiopharmaceutical agents, for molecular 99mTc SPECT imaging and 188Re systemic radiotherapy.


Asunto(s)
Renio , Tecnecio , Ratones , Animales , Tecnecio/química , Quelantes/química , Distribución Tisular , Radioisótopos/química , Renio/química , Radiofármacos/química , Glucosa , Catálisis , Tomografía Computarizada de Emisión de Fotón Único
5.
Hum Brain Mapp ; 41(17): 4952-4963, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32820839

RESUMEN

Cortical thickness (CTh) reflects cortical properties such as dendritic complexity and synaptic density, which are not only vulnerable to developmental disturbances caused by premature birth but also highly relevant for cognitive performance. We tested the hypotheses whether CTh in young adults is altered after premature birth and whether these aberrations are relevant for general cognitive abilities. We investigated CTh based on brain structural magnetic resonance imaging and surface-based morphometry in a large and prospectively collected cohort of 101 very premature-born adults (<32 weeks of gestation and/or birth weight [BW] below 1,500 g) and 111 full-term controls at 26 years of age. Cognitive performance was assessed by full-scale intelligence quotient (IQ) using the Wechsler Adult Intelligence Scale. CTh was reduced in frontal, parietal, and temporal associative cortices predominantly in the left hemisphere in premature-born adults compared to controls. We found a significant positive association of CTh with both gestational age and BW, particularly in the left hemisphere, and a significant negative association between CTh and intensity of neonatal treatment within limited regions bilaterally. Full-scale IQ and CTh in the left hemisphere were positively correlated. Furthermore, CTh in the left hemisphere acted as a mediator on the association between premature birth and full-scale IQ. Results provide evidence that premature born adults have widespread reduced CTh that is relevant for their general cognitive performance. Data suggest lasting reductions in cortical microstructure subserving CTh after premature birth.


Asunto(s)
Peso al Nacer/fisiología , Corteza Cerebral/patología , Cognición/fisiología , Recien Nacido Prematuro/fisiología , Inteligencia/fisiología , Adulto , Corteza Cerebral/diagnóstico por imagen , Femenino , Edad Gestacional , Humanos , Recien Nacido Extremadamente Prematuro/fisiología , Recién Nacido , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino
6.
Hum Brain Mapp ; 41(18): 5215-5227, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-32845045

RESUMEN

Reduced global hippocampus volumes have been demonstrated in premature-born individuals, from newborns to adults; however, it is unknown whether hippocampus subfield (HCSF) volumes are differentially affected by premature birth and how relevant they are for cognitive performance. To address these questions, we investigated magnetic resonance imaging (MRI)-derived HCSF volumes in very premature-born adults, and related them with general cognitive performance in adulthood. We assessed 103 very premature-born (gestational age [GA] <32 weeks and/or birth weight <1,500 g) and 109 term-born individuals with cognitive testing and structural MRI at 26 years of age. HCSFs were automatically segmented based on three-dimensional T1- and T2-weighted sequences and studied both individually and grouped into three functional units, namely hippocampus proper (HP), subicular complex (SC), and dentate gyrus (DG). Cognitive performance was measured using the Wechsler-Adult-Intelligence-Scale (full-scale intelligence quotient [FS-IQ]) at 26 years. We observed bilateral volume reductions for almost all HCSF volumes in premature-born adults and associations with GA and neonatal treatment intensity but not birth weight. Left-sided HP, SC, and DG volumes were associated with adult FS-IQ. Furthermore, left DG volume was a mediator of the association between GA and adult FS-IQ in premature-born individuals. Results demonstrate nonspecifically reduced HCSF volumes in premature-born adults; but specific associations with cognitive outcome highlight the importance of the left DG. Data suggest that specific interventions toward hippocampus function might be promising to lower adverse cognitive effects of prematurity.


Asunto(s)
Peso al Nacer/fisiología , Lateralidad Funcional/fisiología , Hipocampo/anatomía & histología , Recién Nacido de Bajo Peso/fisiología , Recien Nacido Prematuro/fisiología , Inteligencia/fisiología , Adulto , Giro Dentado/anatomía & histología , Giro Dentado/diagnóstico por imagen , Femenino , Edad Gestacional , Hipocampo/diagnóstico por imagen , Humanos , Interpretación de Imagen Asistida por Computador , Recien Nacido Extremadamente Prematuro/fisiología , Recién Nacido , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Escalas de Wechsler
7.
Conscious Cogn ; 28: 113-25, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25062119

RESUMEN

Seemingly precognitive (prophetic) dreams may be a result of one's unconscious processing of environmental cues and having an implicit inference based on these cues manifest itself in one's dreams. We present two studies exploring this implicit processing hypothesis of precognitive dream experience. Study 1 investigated the relationship between implicit learning, transliminality, and precognitive dream belief and experience. Participants completed the Serial Reaction Time task and several questionnaires. We predicted a positive relationship between the variables. With the exception of relationships between transliminality and precognitive dream belief and experience, this prediction was not supported. Study 2 tested the hypothesis that differences in the ability to notice subtle cues explicitly might account for precognitive dream beliefs and experiences. Participants completed a modified version of the flicker paradigm. We predicted a negative relationship between the ability to explicitly detect changes and precognitive dream variables. This relationship was not found. There was also no relationship between precognitive dream belief and experience and implicit change detection.


Asunto(s)
Cognición , Sueños/psicología , Adolescente , Adulto , Señales (Psicología) , Femenino , Humanos , Aprendizaje , Masculino , Persona de Mediana Edad , Modelos Psicológicos , Solución de Problemas , Tiempo de Reacción , Aprendizaje Seriado , Adulto Joven
8.
MethodsX ; 11: 102376, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37767154

RESUMEN

Electroencephalography (EEG) data, acquired simultaneously with magnetic resonance imaging (MRI), must be corrected for artefacts related to MR gradient switches (GS) and the cardioballistic (CB) effect. Canonical approaches require additional signal acquisition for artefact detection (e.g., MR volume onsets, ECG), without which the EEG data would be rendered uncleanable from these artefacts.•We present two broadly applicable methods for artefact detection based on peak detection combined with temporal constraints with respect to periodicity directly from the EEG data itself; no additional signals are required. We validated the performance of our methods versus the two canonical approaches for detection of GS/CB artefact, respectively, on 26 healthy human EEG-functional MRI resting-state datasets. Utilising various performance metrics, we found our methods to perform as well as - and sometimes better than - the canonical standard approaches. With as little as one EEG channel recording, our methods can be applied to detect GS/CB artefacts in EEG data acquired simultaneously with MRI in the absence of MR volume onsets and/or an ECG recording. The detected artefact onsets can then be fed into the standard artefact correction software.

9.
Sci Rep ; 11(1): 5403, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33686187

RESUMEN

Premature-born infants have impaired amygdala structure, presumably due to increased stress levels of premature birth mediated by the amygdala. However, accounting for lifelong plasticity of amygdala, it is unclear whether such structural changes persist into adulthood. To address this problem, we stated the following questions: first, are whole amygdala volumes reduced in premature-born adults? And second, as adult anxiety traits are often increased after prematurity and linked with amygdala structure, are alterations in amygdala associated with adults' anxiety traits after premature birth? We addressed these questions by automated amygdala segmentation of MRI volumes in 101 very premature-born adults (< 32 weeks of gestation and/or birth weight below 1500 g) and 108 full-term controls at 26 years of age of a prospectively and longitudinally collected cohort. We found significantly lower whole amygdala volumes in premature-born adults. While premature-born adults had significantly higher T score for avoidant personality reflecting increased social anxiety trait, this trait was not correlated with amygdala volume alterations. Results demonstrate reduced amygdala volumes in premature born adults. Data suggest lasting effects of prematurity on amygdala structure.


Asunto(s)
Amígdala del Cerebelo , Ansiedad/diagnóstico por imagen , Recien Nacido Prematuro , Imagen por Resonancia Magnética , Nacimiento Prematuro , Adulto , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/crecimiento & desarrollo , Femenino , Estudios de Seguimiento , Humanos , Masculino
10.
Cortex ; 141: 347-362, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34126289

RESUMEN

Premature birth is associated with alterations in brain structure, particularly in white matter. Among white matter, alterations in cortico-thalamic connections are present in premature-born infants, and they have been suggested both to last until adulthood and to contribute to impaired cognitive functions. To test these hypotheses, 70 very premature-born adults and 67 full-term controls underwent cognitive testing and diffusion-weighted imaging. Each cortical hemisphere was parcellated into six lobes, from which probabilistic tractography was performed to the thalamus. Connection probability was chosen as metric of structural connectivity. We found increased cortico-thalamic connection probability between left prefrontal cortices and left medio-dorsal thalamus and reduced connection probability between bilateral temporal cortices and bilateral anterior thalami in very premature-born adults. Aberrant prefronto- and temporo-thalamic connection probabilities were correlated with birth weight and days on ventilation, respectively, supporting the suggestion that these connectivity changes relate with the degree of prematurity. Moreover, an increase in left prefronto-thalamic connection probability also correlated with lower verbal comprehension index indicating its relevance for verbal cognition. Together, our results demonstrate that cortico-thalamic structural connectivity is aberrant in premature-born adults, with these changes being linked with impairments in verbal cognitive abilities. Due to corresponding findings in infants, data suggest aberrant development of cortico-thalamic connectivity after premature birth with lasting effects into adulthood.


Asunto(s)
Tálamo , Sustancia Blanca , Adulto , Encéfalo , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro , Imagen por Resonancia Magnética , Vías Nerviosas/diagnóstico por imagen , Embarazo , Tálamo/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen
11.
Neuroimage Clin ; 31: 102780, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34391140

RESUMEN

While it is known that whole amygdala volume is lastingly reduced after premature birth, it is unknown whether different amygdala nuclei are distinctively affected by prematurity. This question is motivated by two points: First, the observation that developmental trajectories of superficial, centromedial and basolateral amygdala nuclei are different. And second, the expectation that these different developmental pathways are distinctively affected by prematurity. Furthermore, we stated the question whether alterations in amygdala nuclei are associated with increased adults' anxiety traits after premature birth. We investigated 101 very premature-born adults (<32 weeks of gestation and/or birth weight below 1500 g) and 108 full-term controls of a prospectively and longitudinally collected cohort at 26 years of age using automated amygdala nuclei segmentation based on structural MRI. We found selectively reduced volumes of bilateral accessory basal nuclei (pertaining to the basolateral amygdala of claustral developmental trajectory) adjusted for whole amygdala volume. Volumes of bilateral accessory basal nuclei were positively associated with gestational age and negatively associated with duration of ventilation. Furthermore, structural covariance within the basolateral amygdala was increased in premature-born adults. We did not find an association between reduced volumes of basolateral amygdala and increased social anxiety in the prematurity group. These results demonstrate specifically altered basolateral amygdala structure in premature-born adults. Data suggest that prematurity has distinct effects on amygdala nuclei.


Asunto(s)
Amígdala del Cerebelo , Imagen por Resonancia Magnética , Adulto , Amígdala del Cerebelo/diagnóstico por imagen , Ansiedad , Trastornos de Ansiedad , Femenino , Edad Gestacional , Humanos
12.
Front Aging Neurosci ; 13: 653365, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33867970

RESUMEN

Recent evidence suggests increased metabolic and physiologic aging rates in premature-born adults. While the lasting consequences of premature birth on human brain development are known, its impact on brain aging remains unclear. We addressed the question of whether premature birth impacts brain age gap estimates (BrainAGE) using an accurate and robust machine-learning framework based on structural MRI in a large cohort of young premature-born adults (n = 101) and full-term (FT) controls (n = 111). Study participants are part of a geographically defined population study of premature-born individuals, which have been followed longitudinally from birth until young adulthood. We investigated the association between BrainAGE scores and perinatal variables as well as with outcomes of physical (total intracranial volume, TIV) and cognitive development (full-scale IQ, FS-IQ). We found increased BrainAGE in premature-born adults [median (interquartile range) = 1.4 (-1.3-4.7 years)] compared to full-term controls (p = 0.002, Cohen's d = 0.443), which was associated with low Gestational age (GA), low birth weight (BW), and increased neonatal treatment intensity but not with TIV or FS-IQ. In conclusion, results demonstrate elevated BrainAGE in premature-born adults, suggesting an increased risk for accelerated brain aging in human prematurity.

13.
J Cereb Blood Flow Metab ; 40(2): 314-327, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-30480463

RESUMEN

Patients with asymptomatic, high-grade internal carotid artery stenosis often suffer from subtle cognitive impairments with unclear underlying neuro-cognitive mechanisms. Thus, we hypothesized that stenosis-related unilateral cerebral hypoperfusion leads to an ipsilateral attentional bias; 22 patients with asymptomatic, one-sided high-grade carotid stenosis and 24 age-matched healthy controls underwent pseudo-continuous arterial spin labeling to assess brain perfusion in the territory of the carotid arteries. Furthermore, a parametric assessment of attention functions was carried out on the basis of the computational Theory of Visual Attention. Both patients' perfusion and spatial attention were significantly more lateralized than those of healthy controls. Critically, both asymmetry indices were significantly correlated in patients, i.e. the stronger one-sided relative hypoperfusion, the stronger ipsilateral bias of attention. This association was specifically pronounced in parietal cortices and independent of white matter hyperintensities as a surrogate for cerebrovascular brain damage. Results provide evidence for a link between lateralized hypoperfusion and lateralized attentional weighting in asymptomatic, high-grade carotid stenosis. Data suggest that lateralized hypoperfusion with simultaneous spatial attentional bias might serve as a potential therapeutic target in one-sided carotid stenosis.


Asunto(s)
Sesgo Atencional , Arterias Carótidas , Estenosis Carotídea , Circulación Cerebrovascular , Imagen por Resonancia Magnética , Sustancia Blanca , Anciano , Arterias Carótidas/diagnóstico por imagen , Arterias Carótidas/fisiopatología , Estenosis Carotídea/diagnóstico por imagen , Estenosis Carotídea/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sustancia Blanca/irrigación sanguínea , Sustancia Blanca/fisiopatología
14.
Front Neurol ; 9: 26, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29434570

RESUMEN

Previous animal research suggests that the spread of pathological agents in Alzheimer's disease (AD) follows the direction of signaling pathways. Specifically, tau pathology has been suggested to propagate in an infection-like mode along axons, from transentorhinal cortices to medial temporal lobe cortices and consequently to other cortical regions, while amyloid-beta (Aß) pathology seems to spread in an activity-dependent manner among and from isocortical regions into limbic and then subcortical regions. These directed connectivity-based spread models, however, have not been tested directly in AD patients due to the lack of an in vivo method to identify directed connectivity in humans. Recently, a new method-metabolic connectivity mapping (MCM)-has been developed and validated in healthy participants that uses simultaneous FDG-PET and resting-state fMRI data acquisition to identify directed intrinsic effective connectivity (EC). To this end, postsynaptic energy consumption (FDG-PET) is used to identify regions with afferent input from other functionally connected brain regions (resting-state fMRI). Here, we discuss how this multi-modal imaging approach allows quantitative, whole-brain mapping of signaling direction in AD patients, thereby pointing out some of the advantages it offers compared to other EC methods (i.e., Granger causality, dynamic causal modeling, Bayesian networks). Most importantly, MCM provides the basis on which models of pathology spread, derived from animal studies, can be tested in AD patients. In particular, future work should investigate whether tau and Aß in humans propagate along the trajectories of directed connectivity in order to advance our understanding of the neuropathological mechanisms causing disease progression.

15.
J Alzheimers Dis ; 64(2): 405-415, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29843243

RESUMEN

BACKGROUND: Both ongoing local metabolic activity (LMA) and corresponding functional connectivity (FC) with remote brain regions are progressively impaired in Alzheimer's disease (AD), particularly in the posterior default mode network (pDMN); however, it is unknown how these impairments interact. It is well known that decreasing mean synaptic activity of a region, i.e., decreasing LMA, reduces the region's sensitivity to afferent input from other regions, i.e., FC. OBJECTIVE: We hypothesized progressive decoupling between LMA and FC in AD, which is linked to amyloid-ß pathology (Aß). METHODS: Healthy adults (n=20) and Aß+patients without memory impairment (n=9), early MCI (n=21), late MCI (n=18) and AD (n=22) were assessed by resting-state fMRI, FDG-PET, and AV-45-PET to measure FC, LMA, and Aß of the pDMN. Coupling between LMA and FC (rLA/FC) was estimated by voxelwise correlation. RESULTS: RLMA/FC decreased with disease severity (F=20.09, p<0.001). This decrease was specifically associated with pDMN Aß (r=-0.273, p=0.029) but not global Aß (r=-0.112, p=0.378) and with the impact of Aß on FC (i.e., rAß/FC,r=-0.339; p=0.006). In multiple regression models rLMA/FC was also associated with memory impairment, reduced cognitive speed and flexibility, outperforming global Aß, pDMN Aß, pDMN LMA, and pDMN FC, respectively. CONCLUSION: Results demonstrate increasing decoupling of LMA from its FC in AD. Data suggest that decoupling is driven by local Aß and contributes to memory decline.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico por imagen , Análisis de Varianza , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Pruebas Neuropsicológicas , Tomografía de Emisión de Positrones , Análisis de Regresión
16.
Alzheimers Dement (Amst) ; 5: 35-42, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28054026

RESUMEN

INTRODUCTION: Changes in intrinsic functional connectivity (iFC) have been reported at various stages of the Alzheimer's disease (AD) spectrum. We aimed to investigate such alterations over a variety of large-scale intrinsic brain networks (iBNs) across the spectrum of amyloid ß positivity and uncover their relation to cognitive impairment. METHODS: Eight iBNs were defined from resting-state functional magnetic resonance imaging data. In amyloid ß-positive healthy subjects, prodromal, and AD patients (N = 70), within-network iFC (intra-iFC) and between-network iFC (inter-iFC) were correlated with scores of cognitive impairment. RESULTS: Across all iBNs, a general degradation in intra-iFC along the scale of cognitive impairment severity was found. Only subtle changes in inter-iFC were identified. DISCUSSION: Across the AD spectrum, changes in iFC that are strongly related to cognitive impairment occur within an extensive variety of networks.

17.
PLoS One ; 7(7): e40068, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22802952

RESUMEN

BACKGROUND: Corus CAD is a clinically validated test based on age, sex, and expression levels of 23 genes in whole blood that provides a score (1-40 points) proportional to the likelihood of obstructive coronary disease. Clinical laboratory process variability was examined using whole blood controls across a 24 month period: Intra-batch variability was assessed using sample replicates; inter-batch variability examined as a function of laboratory personnel, equipment, and reagent lots. METHODS/RESULTS: To assess intra-batch variability, five batches of 132 whole blood controls were processed; inter-batch variability was estimated using 895 whole blood control samples. ANOVA was used to examine inter-batch variability at 4 process steps: RNA extraction, cDNA synthesis, cDNA addition to assay plates, and qRT-PCR. Operator, machine, and reagent lots were assessed as variables for all stages if possible, for a total of 11 variables. Intra- and inter-batch variations were estimated to be 0.092 and 0.059 Cp units respectively (SD); total laboratory variation was estimated to be 0.11 Cp units (SD). In a regression model including all 11 laboratory variables, assay plate lot and cDNA kit lot contributed the most to variability (p = 0.045; 0.009 respectively). Overall, reagent lots for RNA extraction, cDNA synthesis, and qRT-PCR contributed the most to inter-batch variance (52.3%), followed by operators and machines (18.9% and 9.2% respectively), leaving 19.6% of the variance unexplained. CONCLUSION: Intra-batch variability inherent to the PCR process contributed the most to the overall variability in the study while reagent lot showed the largest contribution to inter-batch variability.


Asunto(s)
Enfermedad de la Arteria Coronaria/diagnóstico , Perfilación de la Expresión Génica/normas , Juego de Reactivos para Diagnóstico/normas , Enfermedad de la Arteria Coronaria/genética , ADN Complementario/biosíntesis , Perfilación de la Expresión Génica/métodos , Humanos , Personal de Laboratorio , ARN/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Reproducibilidad de los Resultados
18.
J Biol ; 5(1): 3, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16507155

RESUMEN

BACKGROUND: Drosophila melanogaster females have two X chromosomes and two autosome sets (XX;AA), while males have a single X chromosome and two autosome sets (X;AA). Drosophila male somatic cells compensate for a single copy of the X chromosome by deploying male-specific-lethal (MSL) complexes that increase transcription from the X chromosome. Male germ cells lack MSL complexes, indicating that either germline X-chromosome dosage compensation is MSL-independent, or that germ cells do not carry out dosage compensation. RESULTS: To investigate whether dosage compensation occurs in germ cells, we directly assayed X-chromosome transcripts using DNA microarrays and show equivalent expression in XX;AA and X;AA germline tissues. In X;AA germ cells, expression from the single X chromosome is about twice that of a single autosome. This mechanism ensures balanced X-chromosome expression between the sexes and, more importantly, it ensures balanced expression between the single X chromosome and the autosome set. Oddly, the inactivation of an X chromosome in mammalian females reduces the effective X-chromosome dose and means that females face the same X-chromosome transcript deficiency as males. Contrary to most current dosage-compensation models, we also show increased X-chromosome expression in X;AA and XX;AA somatic cells of Caenorhabditis elegans and mice. CONCLUSION: Drosophila germ cells compensate for X-chromosome dose. This occurs by equilibrating X-chromosome and autosome expression in X;AA cells. Increased expression of the X chromosome in X;AA individuals appears to be phylogenetically conserved.


Asunto(s)
Compensación de Dosificación (Genética) , Drosophila melanogaster/genética , Cromosoma X , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Drosophila melanogaster/metabolismo , Femenino , Dosificación de Gen , Perfilación de la Expresión Génica , Masculino , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Ovario/metabolismo , Testículo/metabolismo , Transcripción Genética
19.
Nano Lett ; 6(5): 1059-64, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16683851

RESUMEN

We report a quantum dot (Qdot) nanobarcode-based microbead random array platform for accurate and reproducible gene expression profiling in a high-throughput and multiplexed format. Four different sizes of Qdots, with emissions at 525, 545, 565, and 585 nm are mixed with a polymer and coated onto the 8-mum-diameter magnetic microbeads to generate a nanobarcoded bead termed as QBeads. Twelve intensity levels for each of the four colors were used. Gene-specific oligonucleotide probes are conjugated to the surface of each spectrally nanobarcoded bead to create a multiplexed panel, and biotinylated cRNAs are generated from sample total RNA and hybridized to the gene probes on the microbeads. A fifth streptavidin Qdot (655 nm or infrared Qdot) binds to biotin on the cRNA, acting as a quantification reporter. Target identity was decoded based on spectral profile and intensity ratios of the four coding Qdots (525, 545, 565, and 585 nm). The intensity of the 655 nm Qdot reflects the level of biotinylated cRNA captured on the beads and provides the quantification for the corresponding target gene. The system shows a sensitivity of < or =10(4) target molecules detectable with T7 amplification, a level that is better than the 10(5) number achievable with a high-density microarray system, and approaching the 10(3)-10(4) level usually observed for quantitative PCR (qPCR). The QBead nanobarcode system has a dynamic range of 3.5 logs, better than the 2-3 logs observed on various microarray platforms. The hybridization reaction is performed in liquid phase and completed in 1-2 hours, at least 1 order of magnitude faster than microarray-based hybridizations. Detectable fold change is lower than 1.4-fold, showing high precision even at close to single copy per cell level. Reproducibility for this proof-of-concept study approaches that of Affymetrix GeneChip microarray, with an R(2) value between two repeats at 0.984, and interwell CV around 5%. In addition, it provides increased flexibility, convenience, and cost-effectiveness in comparison to conventional gene expression profiling methods.


Asunto(s)
Perfilación de la Expresión Génica/instrumentación , Nanotecnología , Puntos Cuánticos , Procesamiento Automatizado de Datos/instrumentación , Humanos , Microesferas
20.
Science ; 299(5607): 697-700, 2003 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-12511656

RESUMEN

Sex chromosomes are primary determinants of sexual dimorphism in many organisms. These chromosomes are thought to arise via the divergence of an ancestral autosome pair and are almost certainly influenced by differing selection in males and females. Exploring how sex chromosomes differ from autosomes is highly amenable to genomic analysis. We examined global gene expression in Drosophila melanogaster and report a dramatic underrepresentation of X-chromosome genes showing high relative expression in males. Using comparative genomics, we find that these same X-chromosome genes are exceptionally poorly conserved in the mosquito Anopheles gambiae. These data indicate that the X chromosome is a disfavored location for genes selectively expressed in males.


Asunto(s)
Cromosomas/genética , Drosophila melanogaster/genética , Expresión Génica , Genes de Insecto , Cromosoma X/genética , Animales , Anopheles/genética , Mapeo Cromosómico , Compensación de Dosificación (Genética) , Proteínas de Drosophila/genética , Evolución Molecular , Etiquetas de Secuencia Expresada , Femenino , Dosificación de Gen , Perfilación de la Expresión Génica , Ligamiento Genético , Genómica , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Ovario/metabolismo , Proteínas Ribosómicas/genética , Caracteres Sexuales , Testículo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA