Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Endocr Relat Cancer ; 26(2): C1-C5, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30400061

RESUMEN

We recently reported our detection of an anthropoid primate-specific, 'kill switch' tumor suppression system that reached its greatest expression in humans, but that is fully functional only during the first twenty-five years of life, corresponding to the primitive human lifespan that has characterized the majority of our species' existence. This tumor suppression system is based upon the kill switch being triggered in cells in which p53 has been inactivated; such kill switch consisting of a rapid, catastrophic increase in ROS caused by the induction of irreversible uncompetitive inhibition of glucose-6- phosphate dehydrogenase (G6PD), which requires high concentrations of both inhibitor (DHEA) and G6P substrate. While high concentrations of intracellular DHEA are readily available in primates from the importation and subsequent de-sulfation of circulating DHEAS into p53-affected cells, both an anthropoid primate-specific sequence motif (GAAT) in the glucose-6-phosphatase (G6PC) promoter, and primate-specific inactivation of de novo synthesis of vitamin C by deletion of gulonolactone oxidase (GLO) were required to enable accumulation of G6P to levels sufficient to enable irreversible uncompetitive inhibition of G6PD. Malignant transformation acts as a counterforce opposing vertebrate speciation, particularly increases in body size and lifespan that enable optimized exploitation of particular niches. Unique mechanisms of tumor suppression that evolved to enable niche exploitation distinguish vertebrate species, and prevent one vertebrate species from serving as a valid model system for another. This here-to-fore unrecognized element of speciation undermines decades of cancer research data, using murine species, which presumed universal mechanisms of tumor suppression, independent of species. Despite this setback, the potential for pharmacological reconstitution of the kill switch tumor suppression system that distinguishes our species suggests that 'normalization' of human cancer risk, from its current 40% to the 4% of virtually all other large, long-lived species, represents a realistic near-term goal.


Asunto(s)
Neoplasias/genética , Especificidad de la Especie , Animales , Humanos , Vertebrados
2.
Endocr Relat Cancer ; 25(11): R497-R517, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29941676

RESUMEN

The activation of TP53 is well known to exert tumor suppressive effects. We have detected a primate-specific adrenal androgen-mediated tumor suppression system in which circulating DHEAS is converted to DHEA specifically in cells in which TP53 has been inactivated DHEA is an uncompetitive inhibitor of glucose-6-phosphate dehydrogenase (G6PD), an enzyme indispensable for maintaining reactive oxygen species within limits survivable by the cell. Uncompetitive inhibition is otherwise unknown in natural systems because it becomes irreversible in the presence of high concentrations of substrate and inhibitor. In addition to primate-specific circulating DHEAS, a unique, primate-specific sequence motif that disables an activating regulatory site in the glucose-6-phosphatase (G6PC) promoter was also required to enable function of this previously unrecognized tumor suppression system. In human somatic cells, loss of TP53 thus triggers activation of DHEAS transport proteins and steroid sulfatase, which converts circulating DHEAS into intracellular DHEA, and hexokinase which increases glucose-6-phosphate substrate concentration. The triggering of these enzymes in the TP53-affected cell combines with the primate-specific G6PC promoter sequence motif that enables G6P substrate accumulation, driving uncompetitive inhibition of G6PD to irreversibility and ROS-mediated cell death. By this catastrophic 'kill switch' mechanism, TP53 mutations are effectively prevented from initiating tumorigenesis in the somatic cells of humans, the primate with the highest peak levels of circulating DHEAS. TP53 mutations in human tumors therefore represent fossils of kill switch failure resulting from an age-related decline in circulating DHEAS, a potentially reversible artifact of hominid evolution.


Asunto(s)
Neoplasias/genética , Proteína p53 Supresora de Tumor/genética , Humanos , Neoplasias/patología
3.
Case Rep Vet Med ; 2017: 4275305, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29955429

RESUMEN

Glucose-6-phosphate dehydrogenase (G6PD) is an oncoprotein that is overexpressed in cancer cells to provide the NADPH required for their increased anabolism. NADPH, sourced from G6PD fuels nucleotide biosynthesis, maintains redox potential of thioredoxin and glutathione and drives the mevalonate pathway that powers many of the basic mechanisms by which cancer cells escape host control. G6PD is thus a target for cancer treatment being addressed by many groups around the world. We have discovered that systemic inhibition of G6PD by high dose dehydroepiandrosterone (DHEA) causes a severe autoinflammatory response in dogs, which does not occur in mice or rats. Since dogs more closely model the human adrenal androgen system than do common laboratory animals, this finding is relevant to the design of G6PD-inhibiting drugs for humans. The autoinflammatory reaction observed closely resembles mevalonate kinase deficiency (MKD), a rare autosomal recessive disease in humans characterized by recurrent febrile attacks, arthralgia, skin rash, and aphthous ulcers of mucocutaneous tissues. In a manner comparable to animal models of MKD, the reconstitution of protein geranylgeranylation blocked the autoinflammatory reaction caused by systemic G6PD inhibition. This autoinflammatory response to systemic G6PD inhibition represents an unexpected result that must be taken into consideration when targeting this oncoprotein.

4.
Am J Pharmacogenomics ; 3(2): 97-106, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12749727

RESUMEN

The human genome project, as well as advances in our understanding of asthma susceptibility, are yielding novel candidate targets for disease intervention. The normalization of up-regulated gene expression may treat or improve the disease outcome. However, only some of these gene product targets may be 'tractable', i.e. amenable to blockade by small, orally active, organic molecules. The remainder have been termed 'non-tractable'. For over a decade, antisense oligonucleotides (ASONs) have been used as tools to evaluate the importance of specific gene products in vitro. In recent years evidence has accumulated indicating their potential as a viable new therapeutic approach in their own right, being able to block 'non-tractable' targets as well as 'tractable' targets.Distribution, cell-specific uptake, and effectiveness of aerosolized phosphorothioate ASONs are currently being evaluated in animal models. The results demonstrate broad distribution throughout the lung, and uptake by all of the cell types examined to date. Functionality has been demonstrated against diverse targets, including nuclear transcription factors, tyrosine kinases, G-protein coupled receptors, cytokine receptors, growth factors, and chemokines.EPI-2010, a respirable ASON (RASON) against the adenosine A(1) receptor, is the first test case for this new class of respiratory therapeutics. The rationale for EPI-2010 is that overactivity of the adenosine-signaling pathway in asthmatic lungs contributes to airway inflammation and hyperresponsiveness. EPI-2010 binds to the initiation codon of the adenosine A(1) receptor mRNA, and thereby blocks translation and targets the message for degradation by RNase. EPI-2010 is apparently metabolized locally by endogenous nucleases confining its activity to the airways. Phase I clinical trials have shown EPI-2010 to be well-tolerated, with indications of efficacy. In conclusion, one important application of RASONs is in addressing up-regulated disease targets, only some of which are 'tractable' by small molecules. It is hoped that this will yield new therapeutic options to the benefit of patients with asthma and allergic disorders.


Asunto(s)
Asma/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Oligonucleótidos Antisentido/administración & dosificación , Administración por Inhalación , Animales , Asma/inmunología , Humanos
5.
Antisense Nucleic Acid Drug Dev ; 12(3): 177-81, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12162700

RESUMEN

Respirable antisense oligonucleotides (RASONs) represent a novel class of respiratory therapeutic molecules with the potential to specifically address the challenges posed by the successes of the Human Genome Program, namely, the need to rapidly identify the critical pulmonary disease-relevant drugable targets from the vast pool of 30,000-40,000 human genes and to discover and develop drugs that specifically attack these targets. We have shown that EPI-2010, a RASON targeting the adenosine A1 receptor, a G-protein coupled receptor that has been implicated in the regulation of three major determinants of asthma, can be delivered directly to the target disease tissue as an aerosol formulation. In vivo efficacy, absorption, distribution, metabolism, and excretion (ADME), and safety studies of inhaled EPI-2010 employing animal models of human asthma suggest that the RASON approach enables the specific delivery of efficacious, safe, and long-acting doses of phosphorothioate oligonucleotides to the respiratory tract. Moreover, these data indicate that RASONs truly have the potential to address the respiratory drug discovery bottleneck of the postgenomic era, that is, the ability to rapidly validate disease targets and develop pulmonary disease therapeutics for these validated targets.


Asunto(s)
Asma/tratamiento farmacológico , Diseño de Fármacos , Oligonucleótidos Antisentido , Fosfatos , Administración por Inhalación , Sistema Cardiovascular/efectos de los fármacos , Humanos , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/efectos adversos , Oligonucleótidos Antisentido/síntesis química , Oligonucleótidos Antisentido/farmacocinética , Oligonucleótidos Antisentido/uso terapéutico , Fosfatos/administración & dosificación , Fosfatos/efectos adversos , Fosfatos/farmacocinética , Fosfatos/uso terapéutico , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA