Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 113(8): 1676-90, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26724417

RESUMEN

Oleaginous yeasts can convert sugars to lipids with fatty acid profiles similar to those of vegetable oils, making them attractive for production of biodiesel. Lignocellulosic biomass is an attractive source of sugars for yeast lipid production because it is abundant, potentially low cost, and renewable. However, lignocellulosic hydrolyzates are laden with byproducts which inhibit microbial growth and metabolism. With the goal of identifying oleaginous yeast strains able to convert plant biomass to lipids, we screened 32 strains from the ARS Culture Collection, Peoria, IL to identify four robust strains able to produce high lipid concentrations from both acid and base-pretreated biomass. The screening was arranged in two tiers using undetoxified enzyme hydrolyzates of ammonia fiber expansion (AFEX)-pretreated cornstover as the primary screening medium and acid-pretreated switch grass as the secondary screening medium applied to strains passing the primary screen. Hydrolyzates were prepared at ∼18-20% solids loading to provide ∼110 g/L sugars at ∼56:39:5 mass ratio glucose:xylose:arabinose. A two stage process boosting the molar C:N ratio from 60 to well above 400 in undetoxified switchgrass hydrolyzate was optimized with respect to nitrogen source, C:N, and carbon loading. Using this process three strains were able to consume acetic acid and nearly all available sugars to accumulate 50-65% of cell biomass as lipid (w/w), to produce 25-30 g/L lipid at 0.12-0.22 g/L/h and 0.13-0.15 g/g or 39-45% of the theoretical yield at pH 6 and 7, a performance unprecedented in lignocellulosic hydrolyzates. Three of the top strains have not previously been reported for the bioconversion of lignocellulose to lipids. The successful identification and development of top-performing lipid-producing yeast in lignocellulose hydrolyzates is expected to advance the economic feasibility of high quality biodiesel and jet fuels from renewable biomass, expanding the market potential for lignocellulose-derived fuels beyond ethanol for automobiles to the entire U.S. transportation market. Biotechnol. Bioeng. 2016;113: 1676-1690. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Biocombustibles , Biomasa , Lignina/metabolismo , Lípidos/análisis , Levaduras/metabolismo , Metabolismo de los Lípidos/fisiología , Levaduras/fisiología
2.
Environ Technol ; 34(13-16): 1837-48, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24350437

RESUMEN

Switchgrass (Panicum virgatum L.) is a perennial C4 grass that is being developed as a bioenergy crop because it has high production yields and suitable agronomic traits. Five switchgrass biomass samples from upland and lowland switchgrass ecotypes harvested at different stages or maturity were used in this study. Switchgrass samples contained 317.0-385.0 g glucans/kg switchgrass dry basis (db) and 579.3-660.2 g total structural carbohydrates/kg switchgrass, db. Carbohydrate contents were greater for the upland ecotype versus lowland ecotype and increased with harvest maturity. Pretreatment of switchgrass with dilute ammonium hydroxide (8% w/w ammonium loading) at 170 degrees C for 20 min was determined to be effective for preparing switchgrass for enzymatic conversion to monosaccharides; glucose recoveries were 66.9-90.5% and xylose recoveries 60.1-84.2% of maximum and decreased with increased maturity at harvest. Subsequently, pretreated switchgrass samples were converted to ethanol by simultaneous saccharification and fermentation using engineered xylose-fermenting Saccharomyces cerevisiae strain YRH400. Ethanol yields were 176.2-202.01/Mg of switchgrass (db) and followed a similar trend as observed for enzymatic sugar yields.


Asunto(s)
Hidróxido de Amonio/química , Biocombustibles , Etanol/metabolismo , Panicum/química , Panicum/metabolismo , Biomasa , Biotecnología , Etanol/análisis , Etanol/química , Fermentación , Glucosa/análisis , Glucosa/metabolismo , Xilosa/análisis , Xilosa/metabolismo
3.
Rapid Commun Mass Spectrom ; 25(7): 941-50, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21416531

RESUMEN

Xylan is a barrier to enzymatic hydrolysis of plant cell walls. It is well accepted that the xylan layer needs to be removed to efficiently hydrolyze cellulose; consequently, pretreatment conditions are (in part) optimized for maximal xylan depolymerization or displacement. Xylan consists of a long chain of ß-1,4-linked xylose units substituted with arabinose (typically α-1,3-linked in grasses) and glucuronic acid (α-1,2-linked). Xylan has been proposed to have a structural function in plants and therefore may play a role in determining biomass reactivity to pretreatment. It has been proposed that substitutions along xylan chains are not random and, based upon studies of pericarp xylan, are organized in domains that have specific structural functions. Analysis of intact xylan is problematic because of its chain length (> degree of polymerization (d.p.) 100) and heterogeneous side groups. Traditionally, enzymatic end-point products have been characterized due to the limited products generated. Analysis of resultant arabino-xylo-oligosaccharides by mass spectrometry is complicated by the isobaric pentose sugars that primarily compose xylan. In this report, the variation in pentose ring structures was exploited for selective oxidation of the arabinofuranose primary alcohols followed by acid depolymerization to provide oligosaccharides with modified arabinose branches intact. Switchgrass samples were analyzed by hydrophilic interaction chromatography (HILIC)-liquid chromatography (LC)-mass spectrometry/mass spectrometry (MSMS) and off-line nanospray MS to demonstrate the utility of this chemistry for determination of primary hydroxyl groups on oligosaccharide structures, with potential applications for determining the sequence of arabino-xylo-oligosaccharides present in plant cell wall material.


Asunto(s)
Oligosacáridos/química , Panicum/química , Espectrometría de Masas en Tándem/métodos , Xilanos/química , Arabinosa/química , Arabinosa/metabolismo , Cromatografía Liquida , Oligosacáridos/metabolismo , Oxidación-Reducción , Panicum/metabolismo , Xilanos/metabolismo , Xilosidasas/química , Xilosidasas/metabolismo
4.
Bioresour Technol ; 99(12): 5216-25, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17996446

RESUMEN

Dried distillers' grains with solubles (DDGS), a co-product of corn ethanol production, was investigated as a feedstock for additional ethanol production. DDGS was pretreated with liquid hot-water (LHW) and ammonia fiber explosion (AFEX) processes. Cellulose was readily converted to glucose from both LHW and AFEX treated DDGS using a mixture of commercial cellulase and beta-glucosidase; however, these enzymes were ineffective at saccharifying the xylan present in the pretreated DDGS. Several commercial enzyme preparations were evaluated in combination with cellulase to saccharify pretreated DDGS xylan and it was found that adding commercial grade (e.g. impure) pectinase and feruloyl esterase (FAE) preparations were effective at releasing arabinose and xylose. The response of sugar yields for pretreated AFEX and LHW DDGS (6wt%/solids) were determined for different enzyme loadings of FAE and pectinase and modeled as a response surfaces. Arabinose and xylose yields rose with increasing FAE and pectinase enzyme dosages for both pretreated materials. When hydrolyzed at 20wt%/solids with the same blend of commercial enzymes, the yields were 278 and 261g sugars (i.e. total of arabinose, xylose, and glucose) per kg of DDGS (dry basis, db) for AFEX and LHW pretreated DDGS, respectively. The pretreated DDGS's were also evaluated for fermentation using Saccharomyces cerevisiae at 15wt%/solids. Pretreated DDGS were readily fermented and were converted to ethanol at 89-90% efficiency based upon total glucans; S. cerevisiae does not ferment arabinose or xylose.


Asunto(s)
Amoníaco/farmacología , Enzimas/metabolismo , Etanol/química , Etanol/metabolismo , Residuos Industriales , Agua/farmacología , Zea mays/metabolismo , Biomasa , Fermentación/efectos de los fármacos , Hidrólisis/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Xilanos/metabolismo
5.
Metabolites ; 2(4): 959-82, 2012 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24957770

RESUMEN

Switchgrass (Panicum virgatum L., SG) is a perennial grass presently used for forage and being developed as a bioenergy crop for conversion of cell wall carbohydrates to biofuels. Up to 50% of the cell wall associated carbohydrates are xylan. SG was analyzed for xylan structural features at variable harvest maturities. Xylan from each of three maturities was isolated using classical alkaline extraction to yield fractions (Xyl A and B) with varying compositional ratios. The Xyl B fraction was observed to decrease with plant age. Xylan samples were subsequently prepared for structure analysis by digesting with pure endo-xylanase, which preserved side-groups, or a commercial carbohydrase preparation favored for biomass conversion work. Enzymatic digestion products were successfully permethylated and analyzed by reverse-phase liquid chromatography with mass spectrometric detection (RP-HPLC-MSn). This method is advantageous compared to prior work on plant biomass because it avoids isolation of individual arabinoxylan oligomers. The use of RP-HPLC- MSn differentiated 14 structural oligosaccharides (d.p. 3-9) from the monocomponent enzyme digestion and nine oligosaccharide structures (d.p. 3-9) from hydrolysis with a cellulase enzyme cocktail. The distribution of arabinoxylan oligomers varied depending upon the enzyme(s) applied but did not vary with harvest maturity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA