Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nucleic Acids Res ; 52(D1): D92-D97, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37956313

RESUMEN

The European Nucleotide Archive (ENA; https://www.ebi.ac.uk/ena) is maintained by the European Molecular Biology Laboratory's European Bioinformatics Institute (EMBL-EBI). The ENA is one of the three members of the International Nucleotide Sequence Database Collaboration (INSDC). It serves the bioinformatics community worldwide via the submission, processing, archiving and dissemination of sequence data. The ENA supports data types ranging from raw reads, through alignments and assemblies to functional annotation. The data is enriched with contextual information relating to samples and experimental configurations. In this article, we describe recent progress and improvements to ENA services. In particular, we focus upon three areas of work in 2023: FAIRness of ENA data, pandemic preparedness and foundational technology. For FAIRness, we have introduced minimal requirements for spatiotemporal annotation, created a metadata-based classification system, incorporated third party metadata curations with archived records, and developed a new rapid visualisation platform, the ENA Notebooks. For foundational enhancements, we have improved the INSDC data exchange and synchronisation pipelines, and invested in site reliability engineering for ENA infrastructure. In order to support genomic surveillance efforts, we have continued to provide ENA services in support of SARS-CoV-2 data mobilisation and have adapted these for broader pathogen surveillance efforts.


Asunto(s)
Genómica , Nucleótidos , Biología Computacional , Bases de Datos de Ácidos Nucleicos , Internet , Reproducibilidad de los Resultados , Europa (Continente)
2.
Nucleic Acids Res ; 51(D1): D121-D125, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36399492

RESUMEN

The European Nucleotide Archive (ENA; https://www.ebi.ac.uk/ena), maintained by the European Molecular Biology Laboratory's European Bioinformatics Institute (EMBL-EBI), offers those producing data an open and supported platform for the management, archiving, publication, and dissemination of data; and to the scientific community as a whole, it offers a globally comprehensive data set through a host of data discovery and retrieval tools. Here, we describe recent updates to the ENA's submission and retrieval services as well as focused efforts to improve connectivity, reusability, and interoperability of ENA data and metadata.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Academias e Institutos , Biología Computacional , Internet , Programas Informáticos , Conjuntos de Datos como Asunto
3.
Nucleic Acids Res ; 50(D1): D106-D110, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34850158

RESUMEN

The European Nucleotide Archive (ENA, https://www.ebi.ac.uk/ena), maintained at the European Molecular Biology Laboratory's European Bioinformatics Institute (EMBL-EBI) provides freely accessible services, both for deposition of, and access to, open nucleotide sequencing data. Open scientific data are of paramount importance to the scientific community and contribute daily to the acceleration of scientific advance. Here, we outline the major updates to ENA's services and infrastructure that have been delivered over the past year.


Asunto(s)
Biología Computacional , Bases de Datos de Ácidos Nucleicos , Nucleótidos/genética , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Internet , Anotación de Secuencia Molecular , Nucleótidos/clasificación
4.
Nucleic Acids Res ; 49(D1): D82-D85, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33175160

RESUMEN

The European Nucleotide Archive (ENA; https://www.ebi.ac.uk/ena), provided by the European Molecular Biology Laboratory's European Bioinformatics Institute (EMBL-EBI), has for almost forty years continued in its mission to freely archive and present the world's public sequencing data for the benefit of the entire scientific community and for the acceleration of the global research effort. Here we highlight the major developments to ENA services and content in 2020, focussing in particular on the recently released updated ENA browser, modernisation of our release process and our data coordination collaborations with specific research communities.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Ácidos Nucleicos/tendencias , Ácidos Nucleicos/genética , Nucleótidos/genética , Bases de Datos de Ácidos Nucleicos/estadística & datos numéricos , Europa (Continente) , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Internet , Anotación de Secuencia Molecular , Ácidos Nucleicos/química , Nucleótidos/química , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN
5.
Microb Genom ; 10(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38358325

RESUMEN

The COVID-19 pandemic has seen large-scale pathogen genomic sequencing efforts, becoming part of the toolbox for surveillance and epidemic research. This resulted in an unprecedented level of data sharing to open repositories, which has actively supported the identification of SARS-CoV-2 structure, molecular interactions, mutations and variants, and facilitated vaccine development and drug reuse studies and design. The European COVID-19 Data Platform was launched to support this data sharing, and has resulted in the deposition of several million SARS-CoV-2 raw reads. In this paper we describe (1) open data sharing, (2) tools for submission, analysis, visualisation and data claiming (e.g. ORCiD), (3) the systematic analysis of these datasets, at scale via the SARS-CoV-2 Data Hubs as well as (4) lessons learnt. This paper describes a component of the Platform, the SARS-CoV-2 Data Hubs, which enable the extension and set up of infrastructure that we intend to use more widely in the future for pathogen surveillance and pandemic preparedness.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , COVID-19/epidemiología , Genómica , Difusión de la Información
6.
Microb Genom ; 9(12)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38085797

RESUMEN

Fast, efficient public health actions require well-organized and coordinated systems that can supply timely and accurate knowledge. Public databases of pathogen genomic data, such as the International Nucleotide Sequence Database Collaboration (INSDC), have become essential tools for efficient public health decisions. However, these international resources began primarily for academic purposes, rather than for surveillance or interventions. Now, queries need to access not only the whole genomes of multiple pathogens but also make connections using robust contextual metadata to identify issues of public health relevance. Databases that over time developed a patchwork of submission formats and requirements need to be consistently organized and coordinated internationally to allow effective searches.To help resolve these issues, we propose a common pathogen data structure called the Pathogen Data Object Model (DOM) that will formalize the minimum pieces of sequence data and contextual data necessary for general public health uses, while recognizing that submitters will likely withhold a wide range of non-public contextual data. Further, we propose contributors use the Pathogen DOM for all pathogen submissions (bacterial, viral, fungal, and parasites), which will simplify data submissions and provide a consistent and transparent data structure for downstream data analyses. We also highlight how improved submission tools can support the Pathogen DOM, offering users additional easy-to-use methods to ensure this structure is followed.


Asunto(s)
Nucleótidos , Salud Pública , Secuencia de Bases , Genómica/métodos , Bases de Datos de Ácidos Nucleicos
7.
Sci Rep ; 11(1): 20995, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34697381

RESUMEN

Bovine tuberculosis (bTB) is an important animal health and economic problem for the cattle industry and a potential zoonotic threat. Wild badgers (Meles meles) play a role on its epidemiology in some areas of high prevalence in cattle, particularly in the UK and Republic of Ireland and increasingly in parts of mainland Europe. However, little is known about the involvement of badgers in areas on the spatial edge of the cattle epidemic, where increasing prevalence in cattle is seen. Here we report the findings of a study of found-dead (mainly road-killed) badgers in six counties on the edge of the English epidemic of bTB in cattle. The overall prevalence of Mycobacterium tuberculosis complex (MTC) infection detected in the study area was 51/610 (8.3%, 95% CI 6.4-11%) with the county-level prevalence ranging from 15 to 4-5%. The MTC spoligotypes of recovered from badgers and cattle varied: in the northern part of the study area spoligotype SB0129 predominated in both cattle and badgers, but elsewhere there was a much wider range of spoligotypes found in badgers than in cattle, in which infection was mostly with the regional cattle spoligotype. The low prevalence of MTC in badgers in much of the study area, and, relative to in cattle, the lower density of sampling, make firm conclusions difficult to draw. However, with the exception of Cheshire (north-west of the study area), little evidence was found to link the expansion of the bTB epidemic in cattle in England to widespread badger infection.


Asunto(s)
Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/microbiología , Mustelidae/microbiología , Tuberculosis Bovina/epidemiología , Tuberculosis/veterinaria , Animales , Bovinos , Inglaterra/epidemiología , Geografía Médica , Incidencia , Prevalencia , Vigilancia en Salud Pública , Tuberculosis Bovina/microbiología
8.
Sci Rep ; 8(1): 17206, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30523345

RESUMEN

The role of badgers in the geographic expansion of the bovine tuberculosis (bTB) epidemic in England is unknown: indeed there have been few published studies of bTB in badgers outside of the Southwest of England where the infection is now endemic in cattle. Cheshire is now on the edge of the expanding area of England in which bTB is considered endemic in cattle. Previous studies, over a decade ago when bovine infection was rare in Cheshire, found no or only few infected badgers in the south eastern area of the county. In this study, carried out in 2014, road-killed badgers were collected through a network of local stakeholders (farmers, veterinarians, wildlife groups, government agencies), and Mycobacterium bovis was isolated from 21% (20/94) badger carcasses. Furthermore, there was strong evidence for co-localisation of M. bovis SB0129 (genotype 25) infection in both badgers and cattle herds at a county scale. While these findings suggest that both badgers and cattle are part of the same geographically expanding epidemic, the direction of any cross-species transmission and the drivers of this expansion cannot be determined. The study also demonstrated the utility of using road-killed badgers collected by stakeholders as a means of wildlife TB surveillance.


Asunto(s)
Mustelidae/microbiología , Mycobacterium bovis/aislamiento & purificación , Tuberculosis Bovina/epidemiología , Animales , Bovinos , Estudios Transversales , Inglaterra/epidemiología , Monitoreo Epidemiológico/veterinaria , Genotipo , Mycobacterium bovis/genética , Tuberculosis Bovina/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA