Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 165(2): 464-74, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26997485

RESUMEN

A staggering diversity of endophytic fungi associate with healthy plants in nature, but it is usually unclear whether these represent stochastic encounters or provide host fitness benefits. Although most characterized species of the fungal genus Colletotrichum are destructive pathogens, we show here that C. tofieldiae (Ct) is an endemic endophyte in natural Arabidopsis thaliana populations in central Spain. Colonization by Ct initiates in roots but can also spread systemically into shoots. Ct transfers the macronutrient phosphorus to shoots, promotes plant growth, and increases fertility only under phosphorus-deficient conditions, a nutrient status that might have facilitated the transition from pathogenic to beneficial lifestyles. The host's phosphate starvation response (PSR) system controls Ct root colonization and is needed for plant growth promotion (PGP). PGP also requires PEN2-dependent indole glucosinolate metabolism, a component of innate immune responses, indicating a functional link between innate immunity and the PSR system during beneficial interactions with Ct.


Asunto(s)
Arabidopsis/microbiología , Colletotrichum/aislamiento & purificación , Fosfatos/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Colletotrichum/fisiología , Endófitos , Proteínas de Transporte de Fosfato/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , España , Simbiosis
2.
Artículo en Inglés | MEDLINE | ID: mdl-38949504

RESUMEN

Hemibiotrophic fungi in the genus Colletotrichum employ a biotrophic phase invading host epidermal cells followed by a necrotrophic phase spreading through neighboring mesophyll and epidermal cells. We used serial block face scanning electron microscopy (SBF-SEM) to compare subcellular changes that occur in Medicago sativa (alfalfa) cotyledons during infection by Colletotrichum destructivum (compatible on M. sativa) and C. higginsianum (incompatible on M. sativa). Three-dimensional reconstruction of serial images revealed that alfalfa epidermal cells infected with C. destructivum undergo massive cytological changes during the first 60 hours following inoculation to accommodate extensive intracellular hyphal growth. Conversely, inoculation with the incompatible species C. higginsianum resulted in no successful penetration events and frequent formation of papilla-like structures and cytoplasmic aggregates beneath attempted fungal penetration sites. Further analysis of the incompatible interaction using focused ion beam-scanning electron microcopy (FIB-SEM) revealed formation of large multivesicular body-like structures that appeared spherical and were not visible in compatible interactions. These structures often fused with the host plasma membrane, giving rise to paramural bodies that appeared to be releasing extracellular vesicles (EVs). Isolation of EVs from the apoplastic space of alfalfa leaves at 60h post inoculation showed significantly more vesicles secreted from alfalfa infected with incompatible fungus compared to compatible fungus, which in turn was more than produced by non-infected plants. Thus, the increased frequency of paramural bodies during incompatible interactions correlated with an increase in EV quantity in apoplastic wash fluids. Together, these results suggest that EVs and paramural bodies contribute to immunity during pathogen attack in alfalfa.

3.
Mol Plant Microbe Interact ; 37(4): 396-406, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38148303

RESUMEN

We used serial block-face scanning electron microscopy (SBF-SEM) to study the host-pathogen interface between Arabidopsis cotyledons and the hemibiotrophic fungus Colletotrichum higginsianum. By combining high-pressure freezing and freeze-substitution with SBF-SEM, followed by segmentation and reconstruction of the imaging volume using the freely accessible software IMOD, we created 3D models of the series of cytological events that occur during the Colletotrichum-Arabidopsis susceptible interaction. We found that the host cell membranes underwent massive expansion to accommodate the rapidly growing intracellular hypha. As the fungal infection proceeded from the biotrophic to the necrotrophic stage, the host cell membranes went through increasing levels of disintegration culminating in host cell death. Intriguingly, we documented autophagosomes in proximity to biotrophic hyphae using transmission electron microscopy (TEM) and a concurrent increase in autophagic flux between early to mid/late biotrophic phase of the infection process. Occasionally, we observed osmiophilic bodies in the vicinity of biotrophic hyphae using TEM only and near necrotrophic hyphae under both TEM and SBF-SEM. Overall, we established a method for obtaining serial SBF-SEM images, each with a lateral (x-y) pixel resolution of 10 nm and an axial (z) resolution of 40 nm, that can be reconstructed into interactive 3D models using the IMOD. Application of this method to the Colletotrichum-Arabidopsis pathosystem allowed us to more fully understand the spatial arrangement and morphological architecture of the fungal hyphae after they penetrate epidermal cells of Arabidopsis cotyledons and the cytological changes the host cell undergoes as the infection progresses toward necrotrophy. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Arabidopsis , Colletotrichum , Cotiledón , Microscopía Electrónica de Rastreo , Enfermedades de las Plantas , Colletotrichum/fisiología , Colletotrichum/ultraestructura , Colletotrichum/patogenicidad , Arabidopsis/microbiología , Arabidopsis/ultraestructura , Cotiledón/microbiología , Cotiledón/ultraestructura , Enfermedades de las Plantas/microbiología , Interacciones Huésped-Patógeno , Hifa/ultraestructura , Imagenología Tridimensional , Microscopía Electrónica de Transmisión
4.
Metab Eng ; 80: 216-231, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37863177

RESUMEN

Transcriptomic studies have revealed that fungal pathogens of plants activate the expression of numerous biosynthetic gene clusters (BGC) exclusively when in presence of a living host plant. The identification and structural elucidation of the corresponding secondary metabolites remain challenging. The aim was to develop a polycistronic system for heterologous expression of fungal BGCs in Saccharomyces cerevisiae. Here we adapted a polycistronic vector for efficient, seamless and cost-effective cloning of biosynthetic genes using in vivo assembly (also called transformation-assisted recombination) directly in Escherichia coli followed by heterologous expression in S. cerevisiae. Two vectors were generated with different auto-inducible yeast promoters and selection markers. The effectiveness of these vectors was validated with fluorescent proteins. As a proof-of-principle, we applied our approach to the Colletochlorin family of molecules. These polyketide secondary metabolites were known from the phytopathogenic fungus Colletotrichum higginsianum but had never been linked to their biosynthetic genes. Considering the requirement for a halogenase, and by applying comparative genomics, we identified a BGC putatively involved in the biosynthesis of Colletochlorins in C. higginsianum. Following the expression of those genes in S. cerevisiae, we could identify the presence of the precursor Orsellinic acid, Colletochlorins and their non-chlorinated counterparts, the Colletorins. In conclusion, the polycistronic vectors described herein were adapted for the host S. cerevisiae and allowed to link the Colletochlorin compound family to their corresponding biosynthetic genes. This system will now enable the production and purification of infection-specific secondary metabolites of fungal phytopathogens. More widely, this system could be applied to any fungal BGC of interest.


Asunto(s)
Familia de Multigenes , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Regiones Promotoras Genéticas , Familia de Multigenes/genética
5.
Appl Environ Microbiol ; 87(24): e0152621, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34613753

RESUMEN

Copper radical alcohol oxidases (CRO-AlcOx), which have been recently discovered among fungal phytopathogens, are attractive for the production of fragrant fatty aldehydes. With the initial objective to investigate the secretion of CRO-AlcOx by natural fungal strains, we undertook time course analyses of the secretomes of three Colletotrichum species (C. graminicola, C. tabacum, and C. destructivum) using proteomics. The addition of a copper-manganese-ethanol mixture in the absence of any plant-biomass mimicking compounds to Colletotrichum cultures unexpectedly induced the secretion of up to 400 proteins, 29 to 52% of which were carbohydrate-active enzymes (CAZymes), including a wide diversity of copper-containing oxidoreductases from the auxiliary activities (AA) class (AA1, AA3, AA5, AA7, AA9, AA11, AA12, AA13, and AA16). Under these specific conditions, while a CRO-glyoxal oxidase from the AA5_1 subfamily was among the most abundantly secreted proteins, the targeted AA5_2 CRO-AlcOx were secreted at lower levels, suggesting heterologous expression as a more promising strategy for CRO-AlcOx production and utilization. C. tabacum and C. destructivum CRO-AlcOx were thus expressed in Pichia pastoris, and their preference toward both aromatic and aliphatic primary alcohols was assessed. The CRO-AlcOx from C. destructivum was further investigated in applied settings, revealing a full conversion of C6 and C8 alcohols into their corresponding fragrant aldehydes. IMPORTANCE In the context of the industrial shift toward greener processes, the biocatalytic production of aldehydes is of utmost interest owing to their importance for their use as flavor and fragrance ingredients. Copper radical alcohol oxidases (CRO-AlcOx) have the potential to become platform enzymes for the oxidation of alcohols to aldehydes. However, the secretion of CRO-AlcOx by natural fungal strains has never been explored, while the use of crude fungal secretomes is an appealing approach for industrial applications to alleviate various costs pertaining to biocatalyst production. While investigating this primary objective, the secretomics studies revealed unexpected results showing that under the oxidative stress conditions we probed, Colletotrichum species can secrete a broad diversity of copper-containing enzymes (laccases, sugar oxidoreductases, and lytic polysaccharide monooxygenases [LPMOs]) usually assigned to "plant cell wall degradation," despite the absence of any plant-biomass mimicking compound. However, in these conditions, only small amounts of CRO-AlcOx were secreted, pointing out recombinant expression as the most promising path for their biocatalytic application.


Asunto(s)
Colletotrichum , Cobre , Ácidos Grasos/biosíntesis , Oxidorreductasas/metabolismo , Alcoholes , Aldehídos , Colletotrichum/enzimología , Colletotrichum/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Oxidorreductasas/genética , Secretoma
6.
J Exp Bot ; 71(10): 2910-2921, 2020 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-32006004

RESUMEN

Infection of Arabidopsis thaliana by the ascomycete fungus Colletotrichum higginsianum is characterized by an early symptomless biotrophic phase followed by a destructive necrotrophic phase. The fungal genome contains 77 secondary metabolism-related biosynthetic gene clusters, whose expression during the infection process is tightly regulated. Deleting CclA, a chromatin regulator involved in the repression of some biosynthetic gene clusters through H3K4 trimethylation, allowed overproduction of three families of terpenoids and isolation of 12 different molecules. These natural products were tested in combination with methyl jasmonate, an elicitor of jasmonate responses, for their capacity to alter defence gene induction in Arabidopsis. Higginsianin B inhibited methyl jasmonate-triggered expression of the defence reporter VSP1p:GUS, suggesting it may block bioactive jasmonoyl isoleucine (JA-Ile) synthesis or signalling in planta. Using the JA-Ile sensor Jas9-VENUS, we found that higginsianin B, but not three other structurally related molecules, suppressed JA-Ile signalling by preventing the degradation of JAZ proteins, the repressors of jasmonate responses. Higginsianin B likely blocks the 26S proteasome-dependent degradation of JAZ proteins because it inhibited chymotrypsin- and caspase-like protease activities. The inhibition of target degradation by higginsianin B also extended to auxin signalling, as higginsianin B treatment reduced auxin-dependent expression of DR5p:GUS. Overall, our data indicate that specific fungal secondary metabolites can act similarly to protein effectors to subvert plant immune and developmental responses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Diterpenos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Colletotrichum , Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Oxilipinas
7.
Environ Microbiol ; 21(8): 2724-2739, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30887618

RESUMEN

Plant-tissue-colonizing fungi fine-tune the deconstruction of plant-cell walls (PCW) using different sets of enzymes according to their lifestyle. However, some of these enzymes are conserved among fungi with dissimilar lifestyles. We identified genes from Glycoside Hydrolase family GH131 as commonly expressed during plant-tissue colonization by saprobic, pathogenic and symbiotic fungi. By searching all the publicly available genomes, we found that GH131-coding genes were widely distributed in the Dikarya subkingdom, except in Taphrinomycotina and Saccharomycotina, and in phytopathogenic Oomycetes, but neither other eukaryotes nor prokaryotes. The presence of GH131 in a species was correlated with its association with plants as symbiont, pathogen or saprobe. We propose that GH131-family expansions and horizontal-gene transfers contributed to this adaptation. We analysed the biochemical activities of GH131 enzymes whose genes were upregulated during plant-tissue colonization in a saprobe (Pycnoporus sanguineus), a plant symbiont (Laccaria bicolor) and three hemibiotrophic-plant pathogens (Colletotrichum higginsianum, C. graminicola, Zymoseptoria tritici). These enzymes were all active on substrates with ß-1,4, ß-1,3 and mixed ß-1,4/1,3 glucosidic linkages. Combined with a cellobiohydrolase, GH131 enzymes enhanced cellulose degradation. We propose that secreted GH131 enzymes unlock the PCW barrier and allow further deconstruction by other enzymes during plant tissue colonization by symbionts, pathogens and saprobes.


Asunto(s)
Hongos/enzimología , Glicósido Hidrolasas/metabolismo , Oomicetos/enzimología , Plantas/microbiología , Ascomicetos/enzimología , Ascomicetos/genética , Pared Celular/metabolismo , Hongos/genética , Transferencia de Gen Horizontal , Glicósido Hidrolasas/genética , Oomicetos/genética , Simbiosis
8.
J Nat Prod ; 82(4): 813-822, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30776231

RESUMEN

Colletotrichum higginsianum is the causal agent of crucifer anthracnose disease, responsible for important economic losses in Brassica crops. A mutant lacking the CclA subunit of the COMPASS complex was expected to undergo chromatin decondensation and the activation of cryptic secondary metabolite biosynthetic gene clusters. Liquid-state fermentation of the Δ cclA mutant coupled with in situ solid-phase extraction led to the production of three families of compounds, namely, colletorin and colletochlorin derivatives with two new representatives, colletorin D (1) and colletorin D acid (2), the diterpenoid α-pyrone higginsianin family with two new analogues, higginsianin C (3) and 13- epi-higginsianin C (4), and sclerosporide (5) coupling a sclerosporin moiety with dimethoxy inositol.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Colletotrichum/metabolismo , Eliminación de Gen , Espectroscopía de Resonancia Magnética con Carbono-13 , Cromatografía Líquida de Alta Presión , Colletotrichum/genética , Genes Fúngicos , Espectroscopía de Protones por Resonancia Magnética
9.
BMC Genomics ; 18(1): 667, 2017 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-28851275

RESUMEN

BACKGROUND: The ascomycete fungus Colletotrichum higginsianum causes anthracnose disease of brassica crops and the model plant Arabidopsis thaliana. Previous versions of the genome sequence were highly fragmented, causing errors in the prediction of protein-coding genes and preventing the analysis of repetitive sequences and genome architecture. RESULTS: Here, we re-sequenced the genome using single-molecule real-time (SMRT) sequencing technology and, in combination with optical map data, this provided a gapless assembly of all twelve chromosomes except for the ribosomal DNA repeat cluster on chromosome 7. The more accurate gene annotation made possible by this new assembly revealed a large repertoire of secondary metabolism (SM) key genes (89) and putative biosynthetic pathways (77 SM gene clusters). The two mini-chromosomes differed from the ten core chromosomes in being repeat- and AT-rich and gene-poor but were significantly enriched with genes encoding putative secreted effector proteins. Transposable elements (TEs) were found to occupy 7% of the genome by length. Certain TE families showed a statistically significant association with effector genes and SM cluster genes and were transcriptionally active at particular stages of fungal development. All 24 subtelomeres were found to contain one of three highly-conserved repeat elements which, by providing sites for homologous recombination, were probably instrumental in four segmental duplications. CONCLUSION: The gapless genome of C. higginsianum provides access to repeat-rich regions that were previously poorly assembled, notably the mini-chromosomes and subtelomeres, and allowed prediction of the complete SM gene repertoire. It also provides insights into the potential role of TEs in gene and genome evolution and host adaptation in this asexual pathogen.


Asunto(s)
Cromosomas Fúngicos/genética , Colletotrichum/genética , Colletotrichum/metabolismo , Elementos Transponibles de ADN/genética , Genómica , Familia de Multigenes/genética , Recombinación Homóloga/genética , Anotación de Secuencia Molecular , Filogenia , Mutación Puntual/genética
10.
New Phytol ; 211(4): 1323-37, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27174033

RESUMEN

The genome of the hemibiotrophic anthracnose fungus, Colletotrichum higginsianum, encodes a large repertoire of candidate-secreted effectors containing LysM domains, but the role of such proteins in the pathogenicity of any Colletotrichum species is unknown. Here, we characterized the function of two effectors, ChELP1 and ChELP2, which are transcriptionally activated during the initial intracellular biotrophic phase of infection. Using immunocytochemistry, we found that ChELP2 is concentrated on the surface of bulbous biotrophic hyphae at the interface with living host cells but is absent from filamentous necrotrophic hyphae. We show that recombinant ChELP1 and ChELP2 bind chitin and chitin oligomers in vitro with high affinity and specificity and that both proteins suppress the chitin-triggered activation of two immune-related plant mitogen-activated protein kinases in the host Arabidopsis. Using RNAi-mediated gene silencing, we found that ChELP1 and ChELP2 are essential for fungal virulence and appressorium-mediated penetration of both Arabidopsis epidermal cells and cellophane membranes in vitro. The findings suggest a dual role for these LysM proteins as effectors for suppressing chitin-triggered immunity and as proteins required for appressorium function.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/microbiología , Quitina/farmacología , Colletotrichum/metabolismo , Espacio Extracelular/química , Proteínas Fúngicas/metabolismo , Inmunidad de la Planta/efectos de los fármacos , Secuencia de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Quitinasas/metabolismo , Colletotrichum/efectos de los fármacos , Colletotrichum/genética , Colletotrichum/patogenicidad , Proteínas Fúngicas/química , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genes Fúngicos , Hifa/metabolismo , Mutación/genética , Filogenia , Interferencia de ARN , Transcripción Genética/efectos de los fármacos , Virulencia/genética
11.
PLoS Pathog ; 8(4): e1002643, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22496661

RESUMEN

Phytopathogens secrete effector proteins to manipulate their hosts for effective colonization. Hemibiotrophic fungi must maintain host viability during initial biotrophic growth and elicit host death for subsequent necrotrophic growth. To identify effectors mediating these opposing processes, we deeply sequenced the transcriptome of Colletotrichum higginsianum infecting Arabidopsis. Most effector genes are host-induced and expressed in consecutive waves associated with pathogenic transitions, indicating distinct effector suites are deployed at each stage. Using fluorescent protein tagging and transmission electron microscopy-immunogold labelling, we found effectors localised to stage-specific compartments at the host-pathogen interface. In particular, we show effectors are focally secreted from appressorial penetration pores before host invasion, revealing new levels of functional complexity for this fungal organ. Furthermore, we demonstrate that antagonistic effectors either induce or suppress plant cell death. Based on these results we conclude that hemibiotrophy in Colletotrichum is orchestrated through the coordinated expression of antagonistic effectors supporting either cell viability or cell death.


Asunto(s)
Arabidopsis/microbiología , Colletotrichum/metabolismo , Colletotrichum/patogenicidad , Hifa/metabolismo , Hifa/patogenicidad , Enfermedades de las Plantas/microbiología , Factores de Virulencia/biosíntesis , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Colletotrichum/ultraestructura , Regulación Fúngica de la Expresión Génica/fisiología , Hifa/ultraestructura , Transcriptoma/fisiología
12.
New Phytol ; 197(4): 1236-1249, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23252678

RESUMEN

Hemibiotrophic fungal plant pathogens represent a group of agronomically significant disease-causing agents that grow first on living tissue and then cause host death in later, necrotrophic growth. Among these, Colletotrichum spp. are devastating pathogens of many crops. Identifying expanded classes of genes in the genomes of phytopathogenic Colletotrichum, especially those associated with specific stages of hemibiotrophy, can provide insights on how these pathogens infect a large number of hosts. The genomes of Colletotrichum orbiculare, which infects cucurbits and Nicotiana benthamiana, and C. gloeosporioides, which infects a wide range of crops, were sequenced and analyzed, focusing on features with potential roles in pathogenicity. Regulation of C. orbiculare gene expression was investigated during infection of N. benthamiana using a custom microarray. Genes expanded in both genomes compared to other fungi included sequences encoding small, secreted proteins (SSPs), secondary metabolite synthesis genes, proteases and carbohydrate-degrading enzymes. Many SSP and secondary metabolite synthesis genes were upregulated during initial stages of host colonization, whereas the necrotrophic stage of growth is characterized by upregulation of sequences encoding degradative enzymes. Hemibiotrophy in C. orbiculare is characterized by distinct stage-specific gene expression profiles of expanded classes of potential pathogenicity genes.


Asunto(s)
Colletotrichum/fisiología , Genómica , Transcriptoma , Composición de Base , Colletotrichum/genética , Cucurbitaceae/microbiología , ADN de Hongos , Perfilación de la Expresión Génica , Genes Fúngicos , Genoma Fúngico , Enfermedades de las Plantas/microbiología , Análisis de Secuencia de ADN , Nicotiana/microbiología
13.
Sci Rep ; 13(1): 1417, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36697464

RESUMEN

We report here a new application, CustomProteinSearch (CusProSe), whose purpose is to help users to search for proteins of interest based on their domain composition. The application is customizable. It consists of two independent tools, IterHMMBuild and ProSeCDA. IterHMMBuild allows the iterative construction of Hidden Markov Model (HMM) profiles for conserved domains of selected protein sequences, while ProSeCDA scans a proteome of interest against an HMM profile database, and annotates identified proteins using user-defined rules. CusProSe was successfully used to identify, in fungal genomes, genes encoding key enzyme families involved in secondary metabolism, such as polyketide synthases (PKS), non-ribosomal peptide synthetases (NRPS), hybrid PKS-NRPS and dimethylallyl tryptophan synthases (DMATS), as well as to characterize distinct terpene synthases (TS) sub-families. The highly configurable characteristics of this application makes it a generic tool, which allows the user to refine the function of predicted proteins, to extend detection to new enzymes families, and may also be applied to biological systems other than fungi and to other proteins than those involved in secondary metabolism.


Asunto(s)
Hongos , Anotación de Secuencia Molecular , Metabolismo Secundario , Programas Informáticos , Secuencia de Aminoácidos , Anotación de Secuencia Molecular/métodos , Péptido Sintasas/genética , Sintasas Poliquetidas/genética , Metabolismo Secundario/genética , Hongos/enzimología , Hongos/genética , Triptófano Sintasa/genética , Secuencia Conservada/genética
14.
Elife ; 112022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35119361

RESUMEN

Filamentous fungal and oomycete plant pathogens that invade by direct penetration through the leaf epidermal cell wall cause devastating plant diseases. Plant preinvasive immunity toward nonadapted filamentous pathogens is highly effective and durable. Pre- and postinvasive immunity correlates with the formation of evolutionarily conserved and cell-autonomous cell wall structures, named papillae and encasements, respectively. Yet, it is still unresolved how papillae/encasements are formed and whether these defense structures prevent pathogen ingress. Here, we show that in Arabidopsis the two closely related members of the SYP12 clade of syntaxins (PEN1 and SYP122) are indispensable for the formation of papillae and encasements. Moreover, loss-of-function mutants were hampered in preinvasive immunity toward a range of phylogenetically distant nonadapted filamentous pathogens, underlining the versatility and efficacy of this defense. Complementation studies using SYP12s from the early diverging land plant, Marchantia polymorpha, showed that the SYP12 clade immunity function has survived 470 million years of independent evolution. These results suggest that ancestral land plants evolved the SYP12 clade to provide a broad and durable preinvasive immunity to facilitate their life on land and pave the way to a better understanding of how adapted pathogens overcome this ubiquitous plant defense strategy.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Proteínas Qa-SNARE/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Colletotrichum , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Predisposición Genética a la Enfermedad , Marchantia , Phytophthora infestans , Enfermedades de las Plantas/genética , Proteínas Qa-SNARE/genética
15.
J Extracell Vesicles ; 11(5): e12216, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35524440

RESUMEN

Fungal phytopathogens secrete extracellular vesicles (EVs) associated with enzymes and phytotoxic metabolites. While these vesicles are thought to promote infection, defining the true contents and functions of fungal EVs, as well as suitable protein markers, is an ongoing process. To expand our understanding of fungal EVs and their possible roles during infection, we purified EVs from the hemibiotrophic phytopathogen Colletotrichum higginsianum, the causative agent of anthracnose disease in multiple plant species, including Arabidopsis thaliana. EVs were purified in large numbers from the supernatant of protoplasts but not the supernatant of intact mycelial cultures. We purified two separate populations of EVs, each associated with over 700 detected proteins, including proteins involved in vesicle transport, cell wall biogenesis and the synthesis of secondary metabolites. We selected two SNARE proteins (Snc1 and Sso2) and one 14-3-3 protein (Bmh1) as potential EV markers and generated transgenic strains expressing fluorescent fusions. Each marker was confirmed to be protected inside EVs. Fluorescence microscopy was used to examine the localization of each marker during infection on Arabidopsis leaves. These findings further our understanding of EVs in fungal phytopathogens and will help build an experimental system to study EV interkingdom communication between plants and fungi.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Colletotrichum , Vesículas Extracelulares , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Enfermedades de las Plantas/microbiología
16.
Nature ; 430(6996): 167-73, 2004 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-15241405

RESUMEN

The bend in the Hawaiian-Emperor seamount chain is a prominent feature usually attributed to a change in Pacific plate motion approximately 47 Myr ago. However, global plate motion reconstructions fail to predict the bend. Here we show how the geometry of the Hawaiian-Emperor chain and other hotspot tracks can be explained when we combine global plate motions with intraplate deformation and movement of hotspot plumes through distortion by global mantle flow. Global mantle flow models predict a southward motion of the Hawaiian hotspot. This, in combination with a plate motion reconstruction connecting Pacific and African plates through Antarctica, predicts the Hawaiian track correctly since the date of the bend, but predicts the chain to be too far west before it. But if a reconstruction through Australia and Lord Howe rise is used instead, the track is predicted correctly back to 65 Myr ago, including the bend. The difference between the two predictions indicates the effect of intraplate deformation not yet recognized or else not recorded on the ocean floor. The remaining misfit before 65 Myr ago can be attributed to additional intraplate deformation of similar magnitude.

17.
Mol Plant Pathol ; 20(6): 831-842, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30924614

RESUMEN

The role of histone 3 lysine 4 (H3K4) methylation is poorly understood in plant pathogenic fungi. Here, we analysed the function of CclA, a subunit of the COMPASS complex mediating H3K4 methylation, in the brassica anthracnose pathogen Colletotrichum higginsianum. We show that CclA is required for full genome-wide H3K4 trimethylation. The deletion of cclA strongly reduced mycelial growth, asexual sporulation and spore germination but did not impair the morphogenesis of specialized infection structures (appressoria and biotrophic hyphae). Virulence of the ΔcclA mutant on plants was strongly attenuated, associated with a marked reduction in appressorial penetration ability on both plants and inert cellophane membranes. The secondary metabolite profile of the ΔcclA mutant was greatly enriched compared to that of the wild type, with three different families of terpenoid compounds being overproduced by the mutant, namely the colletochlorins, higginsianins and sclerosporide. These included five novel molecules that were produced exclusively by the ΔcclA mutant: colletorin D, colletorin D acid, higginsianin C, 13-epi-higginsianin C and sclerosporide. Taken together, our findings indicate that H3K4 trimethylation plays a critical role in regulating fungal growth, development, pathogenicity and secondary metabolism in C. higginsianum.


Asunto(s)
Colletotrichum/metabolismo , Colletotrichum/patogenicidad , Diterpenos/metabolismo , Histonas/metabolismo , Arabidopsis/microbiología , Colletotrichum/genética , Metilación , Mutación/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Virulencia
18.
Front Plant Sci ; 9: 562, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29770142

RESUMEN

The genome of the hemibiotrophic anthracnose fungus, Colletotrichum higginsianum, encodes a large inventory of putative secreted effector proteins that are sequentially expressed at different stages of plant infection, namely appressorium-mediated penetration, biotrophy and necrotrophy. However, the destinations to which these proteins are addressed inside plant cells are unknown. In the present study, we selected 61 putative effector genes that are highly induced in appressoria and/or biotrophic hyphae. We then used Agrobacterium-mediated transformation to transiently express them as N-terminal fusions with fluorescent proteins in cells of Nicotiana benthamiana for imaging by confocal microscopy. Plant compartments labeled by the fusion proteins in N. benthamiana were validated by co-localization with specific organelle markers, by transient expression of the proteins in the true host plant, Arabidopsis thaliana, and by transmission electron microscopy-immunogold labeling. Among those proteins for which specific subcellular localizations could be verified, nine were imported into plant nuclei, three were imported into the matrix of peroxisomes, three decorated cortical microtubule arrays and one labeled Golgi stacks. Two peroxisome-targeted proteins harbored canonical C-terminal tripeptide signals for peroxisome import via the PTS1 (peroxisomal targeting signal 1) pathway, and we showed that these signals are essential for their peroxisome localization. Our findings provide valuable information about which host processes are potentially manipulated by this pathogen, and also reveal plant peroxisomes, microtubules, and Golgi as novel targets for fungal effectors.

19.
Sci Rep ; 7(1): 9319, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28839137

RESUMEN

Arabidopsis thaliana mlo2 mlo6 mlo12 triple mutant plants exhibit complete immunity against infection by otherwise virulent obligate biotrophic powdery mildew fungi such as Golovinomyces orontii. While this phenotype is well documented, the interaction profile of the triple mutant with other microbes is underexplored and incomplete. Here, we thoroughly assessed and quantified the infection phenotypes of two independent powdery mildew-resistant triple mutant lines with a range of microbes. These microorganisms belong to three kingdoms of life, engage in diverse trophic lifestyles, and deploy different infection strategies. We found that interactions with microbes that do not directly enter leaf epidermal cells were seemingly unaltered or showed even enhanced microbial growth or symptom formation in the mlo2 mlo6 mlo12 triple mutants, as shown for Pseudomonas syringae and Fusarium oxysporum. By contrast, the mlo2 mlo6 mlo12 triple mutants exhibited reduced host cell entry rates by Colletotrichum higginsianum, a fungal pathogen showing direct penetration of leaf epidermal cells comparable to G. orontii. Together with previous findings, the results of this study strengthen the notion that mutations in genes MLO2, MLO6 and MLO12 not only restrict powdery mildew colonization, but also affect interactions with a number of other phytopathogens.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Unión a Calmodulina/genética , Colletotrichum/patogenicidad , Resistencia a la Enfermedad , Fusarium/patogenicidad , Proteínas de la Membrana/genética , Enfermedades de las Plantas/inmunología , Pseudomonas syringae/patogenicidad , Arabidopsis/genética , Arabidopsis/microbiología , Colletotrichum/crecimiento & desarrollo , Fusarium/crecimiento & desarrollo , Proteínas Mutantes/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA