Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Glycoconj J ; 39(5): 579-586, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36001187

RESUMEN

The Cost Action "Innovation with glycans: new frontiers from synthesis to new biological targets" (INNOGLY) hosted the Workshop "Neuroglycoproteins in health and disease", in Alicante, Spain, on March 2022. This event brought together an european group of scientists that presented novel insights into changes in glycosylation in diseases of the central nervous system and cancer, as well as new techniques to study protein glycosylation. Herein we provide the abstracts of all the presentations.


Asunto(s)
Neoplasias , Polisacáridos , Glicosilación , Humanos , Polisacáridos/metabolismo
2.
Anal Biochem ; 623: 114205, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33891963

RESUMEN

Protein glycosylation contributes to critical biological function of glycoproteins. Glycan analysis is essential for the production of biopharmaceuticals as well as for the identification of disease biomarkers. However, glycans are highly heterogeneous, which has considerably hampered the progress of glycomics. Here, we present an improved 96-well plate format platform for streamlined glycan profiling that takes advantage of rapid glycoprotein denaturation, deglycosylation, fluorescent derivatization, and on-matrix glycan clean-up. This approach offers high sensitivity with consistent identification and quantification of diverse N-glycans across multiple samples on a high-throughput scale. We demonstrate its capability for N-glycan profiling of glycoproteins from various sources, including two recombinant monoclonal antibodies produced from Chinese Hamster Ovary cells, EG2-hFc and rituximab, polyclonal antibodies purified from human serum, and total glycoproteins from human serum. Combined with the complementary information obtained by sequential digestion from exoglycosidase arrays, this approach allows the detection and identification of multiple N-glycans in these complex biological samples. The reagents, workflow, and Hydrophilic interaction liquid chromatography with fluorescence detection (HILIC-FLD), are simple enough to be implemented into a straightforward user-friendly setup. This improved technology provides a powerful tool in support of rapid advancement of glycan analysis for biopharmaceutical development and biomarker discovery for clinical disease diagnosis.


Asunto(s)
Productos Biológicos/análisis , Productos Biológicos/química , Ensayos Analíticos de Alto Rendimiento/métodos , Polisacáridos/análisis , Polisacáridos/química , Animales , Anticuerpos Monoclonales/análisis , Anticuerpos Monoclonales/química , Biomarcadores/análisis , Biomarcadores/química , Células CHO , Camélidos del Nuevo Mundo , Cricetulus , Descubrimiento de Drogas/métodos , Pruebas de Enzimas/métodos , Glicómica/métodos , Glicoproteínas/análisis , Glicoproteínas/química , Glicósido Hidrolasas/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Polisacáridos/sangre , Proteínas Recombinantes/análisis , Proteínas Recombinantes/química , Espectrometría de Fluorescencia/métodos
3.
Mol Cell Proteomics ; 18(11): 2191-2206, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31471495

RESUMEN

The direct association of the genome, transcriptome, metabolome, lipidome and proteome with the serum glycome has revealed systems of interconnected cellular pathways. The exact roles of individual glycoproteomes in the context of disease have yet to be elucidated. In a move toward personalized medicine, it is now becoming critical to understand disease pathogenesis, and the traits, stages, phenotypes and molecular features that accompany it, as the disruption of a whole system. To this end, we have developed an innovative technology on an automated platform, "GlycoSeqCap," which combines N-glycosylation data from six glycoproteins using a single source of human serum. Specifically, we multiplexed and optimized a successive serial capture and glycoanalysis of six purified glycoproteins, immunoglobulin G (IgG), immunoglobulin M (IgM), immunoglobulin A (IgA), transferrin (Trf), haptoglobin (Hpt) and alpha-1-antitrypsin (A1AT), from 50 µl of human serum. We provide the most comprehensive and in-depth glycan analysis of individual glycoproteins in a single source of human serum to date. To demonstrate the technological application in the context of a disease model, we performed a pilot study in an ovarian cancer cohort (n = 34) using discrimination and classification analyses to identify aberrant glycosylation. In our sample cohort, we exhibit improved selectivity and specificity over the currently used biomarker for ovarian cancer, CA125, for early stage ovarian cancer. This technology will establish a new state-of-the-art strategy for the characterization of individual serum glycoproteomes as a diagnostic and monitoring tool which represents a major step toward understanding the changes that take place during disease.


Asunto(s)
Proteínas de Fase Aguda/análisis , Biomarcadores de Tumor/sangre , Glicoproteínas/sangre , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Neoplasias Ováricas/diagnóstico , Estudios de Casos y Controles , Femenino , Glicómica , Glicosilación , Humanos , Masculino , Metástasis de la Neoplasia , Neoplasias Ováricas/sangre , Proyectos Piloto , Polisacáridos/análisis , Proteoma/análisis
4.
Mol Cell Proteomics ; 18(1): 3-15, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30242110

RESUMEN

N-Glycosylation is a fundamentally important protein modification with a major impact on glycoprotein characteristics such as serum half-life and receptor interaction. More than half of the proteins in human serum are glycosylated, and the relative abundances of protein glycoforms often reflect alterations in health and disease. Several analytical methods are currently capable of analyzing the total serum N-glycosylation in a high-throughput manner.Here we evaluate and compare the performance of three high-throughput released N-glycome analysis methods. Included were hydrophilic-interaction ultra-high-performance liquid chromatography with fluorescence detection (HILIC-UHPLC-FLD) with 2-aminobenzamide labeling of the glycans, multiplexed capillary gel electrophoresis with laser-induced fluorescence detection (xCGE-LIF) with 8-aminopyrene-1,3,6-trisulfonic acid labeling, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) with linkage-specific sialic acid esterification. All methods assessed the same panel of serum samples, which were obtained at multiple time points during the pregnancies and postpartum periods of healthy women and patients with rheumatoid arthritis (RA). We compared the analytical methods on their technical performance as well as on their ability to describe serum protein N-glycosylation changes throughout pregnancy, with RA, and with RA disease activity.Overall, the methods proved to be similar in their detection and relative quantification of serum protein N-glycosylation. However, the non-MS methods showed superior repeatability over MALDI-TOF-MS and allowed the best structural separation of low-complexity N-glycans. MALDI-TOF-MS achieved the highest throughput and provided compositional information on higher-complexity N-glycans. Consequentially, MALDI-TOF-MS could establish the linkage-specific sialylation differences within pregnancy and RA, whereas HILIC-UHPLC-FLD and xCGE-LIF demonstrated differences in α1,3- and α1,6-branch galactosylation. While the combination of methods proved to be the most beneficial for the analysis of total serum protein N-glycosylation, informed method choices can be made for the glycosylation analysis of single proteins or samples of varying complexity.


Asunto(s)
Artritis Reumatoide/metabolismo , Proteínas Sanguíneas/análisis , Glicómica/métodos , Complicaciones del Embarazo/metabolismo , Adulto , Proteínas Sanguíneas/química , Cromatografía Líquida de Alta Presión , Electroforesis Capilar , Femenino , Glicosilación , Humanos , Embarazo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
5.
Anal Chem ; 92(19): 12842-12851, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32815717

RESUMEN

N-glycan alterations in the nervous system can result in different neuropathological symptoms such as mental retardation, seizures, and epilepsy. Studies have reported the characterization of N-glycans in rodent brains, but there is a lack of spatial resolution as either the tissue samples were homogenized or specific proteins were selected for analysis of glycosylation. We hypothesize that region-specific resolution of N-glycans isolated from the striatum and substantia nigra (SN) can give an insight into the establishment and pathophysiological degeneration of neural circuitry in Parkinson's disease. Specific objectives of the study include isolation of N-glycans from the rat striatum and SN; reproducibility, resolution, and relative quantitation of N-glycome using ultra-performance liquid chromatography (UPLC), weak anion exchange-UPLC, and lectin histochemistry. The total N-glycomes from the striatum and SN were characterized using database mining (GlycoStore), exoglycosidase digestions, and liquid chromatography-mass spectrometry. It revealed significant differences in complex and oligomannose type N-glycans, sialylation (mono-, di-, and tetra-), fucosylation (tri-, core, and outer arm), and galactosylation (di-, tri-, and tetra-) between striatum and SN N-glycans with the detection of phosphorylated N-glycans in SN which were not detected in the striatum. This study presents the most comprehensive comparative analysis of relative abundances of N-glycans in the striatum and SN of rodent brains, serving as a foundation for identifying "brain-type" glycans as biomarkers or therapeutic targets and their modulation in neurodegenerative disorders.


Asunto(s)
Cuerpo Estriado/química , Polisacáridos/metabolismo , Sustancia Negra/química , Animales , Cromatografía Líquida de Alta Presión , Cuerpo Estriado/metabolismo , Espectrometría de Masas , Polisacáridos/análisis , Ratas , Sustancia Negra/metabolismo
6.
Expert Rev Proteomics ; 15(1): 13-29, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29130774

RESUMEN

INTRODUCTION: Glycosylation is recognized as a Critical Quality Attribute for therapeutic glycoproteins such as monoclonal antibodies, fusion proteins and therapeutic replacement enzymes. Hence, efficient and quantitative glycan analysis techniques have been increasingly important for their discovery, development and quality control. The aim of this review is to highlight relevant and recent advances in analytical technologies for characterization of biotherapeutic glycoproteins. Areas covered: The review gives an overview of the glycosylation trends of biotherapeutics approved in 2016 and 2017 by FDA. It describes current and novel analytical technologies for characterization of therapeutic glycoproteins and is explored in the context of released glycan, glycopeptide or intact glycoprotein analysis. Ultra performance liquid chromatography, mass spectrometry and capillary electrophoresis technologies are explored in this context. Expert commentary: There is a need for the biopharmaceutical industry to incorporate novel state of the art analytical technologies into existing and new therapeutic glycoprotein workflows for safer and more efficient biotherapeutics and for the improvement of future biotherapeutic design. Additionally, at present, there is no 'gold-standard' approach to address all the regulatory requirements and as such this will involve the use of orthogonal glycoanalytical technologies with a view to gain diagnostic information about the therapeutic glycoprotein.


Asunto(s)
Productos Biológicos/análisis , Productos Biológicos/uso terapéutico , Glicoproteínas/análisis , Glicoproteínas/uso terapéutico , Terapéutica , Animales , Productos Biológicos/química , Glicoproteínas/química , Glicosilación , Humanos , Polisacáridos/química
7.
J Proteome Res ; 16(11): 4237-4243, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-28953389

RESUMEN

Here we report evidence that new aminoquinoline N-glycan fluorescent labels interfere with the release of core α(1-6) fucose from N-glycans by bovine kidney α-l-fucosidase (BKF). BKF is a commonly employed exoglycosidase for core α(1-6) fucose determination. Molecular simulations of the bound and unbound Fuc-α(1-6)-GlcNAc, where GlcNAc is situated at the reducing end for all N-glycans, suggest that the reduced BKF activity may be due to a nonoptimal fit of the highest populated conformers in the BKF active binding site at room temperature. Population analysis and free energy estimates suggest that an enhanced flexibility of the labeled sugar, which facilitates recognition and binding, can be achievable with extended reaction conditions. We provide these experimental conditions using a sequential exoglycosidase digestion array using high concentrations of BKF.


Asunto(s)
Aminoquinolinas/farmacología , Fucosa/aislamiento & purificación , Polisacáridos/química , alfa-L-Fucosidasa/metabolismo , Animales , Sitios de Unión , Bovinos , Colorantes Fluorescentes , Polisacáridos/metabolismo , Coloración y Etiquetado
10.
J Proteome Res ; 14(10): 4402-12, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26401844

RESUMEN

MAN1B1-CDG has recently been characterized as a type II congenital disorder of glycosylation (CDG), disrupting not only protein N-glycosylation but also general Golgi morphology. Using our high-throughput, quantitative ultra-performance liquid chromatography assay, we achieved a detailed characterization of the glycosylation changes in both total serum glycoproteins and isolated serum IgG from ten previously reported MAN1B1-CDG patients. We have identified and quantified novel hybrid high-mannosylated MAN1B1-CDG-specific IgG glycans and found an increase of sialyl Lewis x (sLex) glycans on serum proteins of all patients. This increase in sLex has not been previously reported in any CDG. These findings may provide insight into the pathophysiology of this CDG.


Asunto(s)
Trastornos Congénitos de Glicosilación/sangre , Trastornos Congénitos de Glicosilación/diagnóstico , Inmunoglobulina G/genética , Antígeno Lewis X/genética , alfa-Manosidasa/genética , Biomarcadores/sangre , Secuencia de Carbohidratos , Estudios de Casos y Controles , Cromatografía Liquida , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/patología , Regulación de la Expresión Génica , Glicómica , Glicoproteínas/sangre , Glicoproteínas/genética , Glicosilación , Aparato de Golgi/metabolismo , Aparato de Golgi/patología , Humanos , Inmunoglobulina G/sangre , Antígeno Lewis X/sangre , Datos de Secuencia Molecular , alfa-Manosidasa/deficiencia
11.
Biomolecules ; 14(1)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38254725

RESUMEN

Recombinant human erythropoietin (EPO) is a biopharmaceutical frequently used in the treatment of anemia. It is a heavily glycosylated protein with a diverse and complex glycome. EPO N-glycosylation influences important pharmacological parameters, prominently serum half-life. Therefore, EPO N-glycosylation analysis is of the utmost importance in terms of controlling critical quality attributes. In this work, we performed an interlaboratory study of glycoanalytical techniques for profiling and in-depth characterization, namely (1) hydrophilic interaction liquid chromatography with fluorescence detection after 2-aminobenzamide labeling (HILIC-FLD(2AB)) and optional weak anion exchange chromatography (WAX) fractionation and exoglycosidase digestion, (2) HILIC-FLD after procainamide labeling (PROC) optionally coupled to electrospray ionization-MS and (3) matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-MS). All techniques showed good precision and were able to differentiate the unique N-glycosylation profiles of the various EPO preparations. HILIC-FLD showed higher precision, while MALDI-TOF-MS covered the most analytes. However, HILIC-FLD differentiated isomeric N-glycans, i.e., N-acetyllactosamine repeats and O-acetylation regioisomers. For routine profiling, HILIC-FLD methods are more accessible and cover isomerism in major structures, while MALDI-MS covers more minor analytes with an attractively high throughput. For in-depth characterization, MALDI-MS and HILIC-FLD(2AB)/WAX give a similar amount of orthogonal information. HILIC-FLD(PROC)-MS is attractive for covering isomerism of major structures with a significantly less extensive workflow compared to HILIC-FLD(2AB)/WAX.


Asunto(s)
Eritropoyetina , Humanos , Glicosilación , Procesamiento Proteico-Postraduccional , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Acetilación
12.
J Org Chem ; 78(6): 2175-90, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23343519

RESUMEN

Glucuronosyl diacylglycerides (GlcAGroAc2) are functionally important glycolipids and membrane anchors for cell wall lipoglycans in the Corynebacteria. Here we describe the complete synthesis of distinct acyl-isoforms of GlcAGroAc2 bearing both acylation patterns of (R)-tuberculostearic acid (C19:0) and palmitic acid (C16:0) and their mass spectral characterization. Collision-induced fragmentation mass spectrometry identified characteristic fragment ions that were used to develop "rules" allowing the assignment of the acylation pattern as C19:0 (sn-1), C16:0 (sn-2) in the natural product from Mycobacterium smegmatis, and the structural assignment of related C18:1 (sn-1), C16:0 (sn-2) GlcAGroAc2 glycolipids from M. smegmatis and Corynebacterium glutamicum. A synthetic hydrophobic octyl glucuronoside was used to characterize the GDP-mannose-dependent mannosyltransferase MgtA from C. glutamicum that extends GlcAGroAc2. This enzyme is an Mg(2+)/Mn(2+)-dependent metalloenzyme that undergoes dramatic activation upon reduction with dithiothreitol.


Asunto(s)
Proteínas Bacterianas/química , Corynebacterium/química , Glicéridos/análisis , Glicéridos/síntesis química , Glucolípidos/análisis , Glucolípidos/síntesis química , Magnesio/química , Manosiltransferasas/química , Mycobacterium smegmatis/química , Mycobacterium/química , Ácidos Esteáricos/química , Vías Biosintéticas , Glicéridos/química , Glucolípidos/química , Espectrometría de Masas
13.
Biomolecules ; 14(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254617

RESUMEN

(1) Aim: To describe, in a general adult population, the serum N-glycome in relation to age in men and women, and investigate the association of N-glycome patterns with age-related comorbidity; (2) Methods: The serum N-glycome was studied by hydrophilic interaction chromatography with ultra-performance liquid chromatography in 1516 randomly selected adults (55.3% women; age range 18-91 years). Covariates included lifestyle factors, metabolic disorders, inflammatory markers, and an index of comorbidity. Principal component analysis was used to define clusters of individuals based on the 46 glycan peaks obtained in chromatograms; (3) Results: The serum N-glycome changed with ageing, with significant differences between men and women, both in individual N-glycan peaks and in groups defined by common features (branching, galactosylation, sialylation, fucosylation, and oligomannose). Through K-means clustering algorithm, the individuals were grouped into a cluster characterized by abundance of simpler N-glycans and a cluster characterized by abundance of higher-order N-glycans. The individuals of the first cluster were older, showed higher concentrations of glucose and glycation markers, higher levels of some inflammatory markers, lower glomerular filtration rate, and greater comorbidity index; (4) Conclusions: The serum N-glycome changes with ageing with sex dimorphism. The N-glycome could be, in line with the inflammaging hypothesis, a marker of unhealthy aging.


Asunto(s)
Envejecimiento , Algoritmos , Adulto , Masculino , Humanos , Femenino , Adolescente , Adulto Joven , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Análisis por Conglomerados , Comorbilidad , Polisacáridos
14.
Nat Commun ; 14(1): 3015, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37230981

RESUMEN

A significant proportion of the infant gut microbiome is considered to be acquired from the mother during and after birth. Thus begins a lifelong and dynamic relationship with microbes that has an enduring impact on host health. Based on a cohort of 135 mother-infant (F = 72, M = 63) dyads (MicrobeMom: ISRCTN53023014), we investigated the phenomenon of microbial strain transfer, with a particular emphasis on the use of a combined metagenomic-culture-based approach to determine the frequency of strain transfer involving members of the genus Bifidobacterium, including species/strains present at low relative abundance. From the isolation and genome sequencing of over 449 bifidobacterial strains, we validate and augment metagenomics-based evidence to reveal strain transfer in almost 50% of dyads. Factors important in strain transfer include vaginal birth, spontaneous rupture of amniotic membranes, and avoidance of intrapartum antibiotics. Importantly, we reveal that several transfer events are uniquely detected employing either cultivation or metagenomic sequencing, highlighting the requirement for a dual approach to obtain an in-depth insight into this transfer process.


Asunto(s)
Bifidobacterium , Microbioma Gastrointestinal , Humanos , Lactante , Femenino , Embarazo , Madres , Microbioma Gastrointestinal/genética , Metagenoma/genética , Parto , Heces/microbiología
15.
Molecules ; 17(10): 11346-62, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-23011277

RESUMEN

L-aspartic acid building blocks bearing galactosyl moieties were used to synthesise glycolipid mimetics of variable hydrocarbon chain length. The glycolipids were readily prepared through amide bond formation using the TBTU/HOBt coupling methodology. It was observed that, under these conditions, activation of the α-carboxylic acid of the intermediates led to near complete racemisation of the chiral centre if the reaction was carried out in the presence of a base such as triethylamine. The enantiomerically pure glycolipids were obtained after careful consideration of the synthetic sequence and by performing the coupling reactions in the absence of base.


Asunto(s)
Ácido Aspártico/química , Glucolípidos/síntesis química , Glucolípidos/química
16.
Biomolecules ; 12(2)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35204742

RESUMEN

Background and aim: Glycomic alterations serve as biomarker tools for different diseases. The present study aims to evaluate the diagnostic capability of serum N-glycosylation to identify alcohol risk drinking in comparison with standard markers. Methods: We included 1516 adult individuals (age range 18-91 years; 55.3% women), randomly selected from a general population. A total of 143 (21.0%) men and 50 (5.9%) women were classified as risk drinkers after quantification of daily alcohol consumption and the Alcohol Use Disorders Identification Test (AUDIT). Hydrophilic interaction ultra-performance liquid chromatography (HILIC-UPLC) was used for the quantification of 46 serum N-glycan peaks. Serum gamma-glutamyltransferase (GGT), carbohydrate-deficient transferrin (CDT), and red blood cell mean corpuscular volume (MCV) were measured by standard clinical laboratory methods. Results: Variations in serum N-glycome associated risk drinking were more prominent in men compared to women. A unique combination of N-glycan peaks selected by the selbal algorithm shows good discrimination between risk-drinkers and non-risk drinkers for men and women. Receiver operating characteristics (ROC) curves show accuracy for the diagnosis of risk drinking, which is comparable to that of the golden standards, GGT, MCV and CDT markers for men and women. Additionally, the inclusion of N-glycan peaks improves the diagnostic accuracy of the standard markers, although it remains relatively low, due to low sensitivity. For men, the area under the ROC curve using N-glycome data is 0.75, 0.76, and 0.77 when combined with GGT, MCV, and CDT, respectively. In women, the areas were 0.76, 0.73, and 0.73, respectively. Conclusion: Risk drinking is associated with significant variations in the serum N-glycome, which highlights its potential diagnostic utility.


Asunto(s)
Alcoholismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Consumo de Bebidas Alcohólicas , Alcoholismo/diagnóstico , Biomarcadores , Femenino , Humanos , Masculino , Persona de Mediana Edad , Curva ROC , Adulto Joven , gamma-Glutamiltransferasa
17.
JIMD Rep ; 61(1): 76-88, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34485021

RESUMEN

BACKGROUND: Classical galactosemia (CG) (OMIM #230400) is a rare disorder of carbohydrate metabolism, due to deficiency of galactose-1-phosphate uridyltransferase (EC 2.7.7.12). The pathophysiology of the long-term complications, mainly cognitive, neurological, and female infertility remains poorly understood. OBJECTIVES: This study investigated (a) the association between specific IgG N-glycosylation biomarkers (glycan peaks and grouped traits) and CG patients (n = 95) identified from the GalNet Network, using hydrophilic interaction ultraperformance liquid chromatography and (b) a further analysis of a GALT c.563A-G/p.Gln188Arg homozygous cohort (n = 49) with correlation with glycan features with patient Full Scale Intelligence Quotient (FSIQ), and (c) with galactose intake. RESULTS: A very significant decrease in galactosylation and sialylation and an increase in core fucosylation was noted in CG patients vs controls (P < .005). Bisected glycans were decreased in the severe GALT c.563A-G/p.Gln188Arg homozygous cohort (n = 49) (P < .05). Logistic regression models incorporating IgG glycan traits distinguished CG patients from controls. Incremental dietary galactose intake correlated positively with FSIQ for the p.Gln188Arg homozygous CG cohort (P < .005) for a dietary galactose intake of 500 to 1000 mg/d. Significant improvements in profiles with increased galactose intake were noted for monosialylated, monogalactosylated, and monoantennary glycans. CONCLUSION: These results suggest that N-glycosylation abnormalities persist in CG patients on dietary galactose restriction which may be modifiable to a degree by dietary galactose intake.

18.
Biotechnol Adv ; 43: 107552, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32416132

RESUMEN

The manufacturing of recombinant protein is traditionally undertaken in mammalian cell culture. Today, speed, cost and safety are the primary considerations for process improvements in both upstream and downstream manufacturing. Leaders in the biopharmaceutical industry are striving for continuous improvements to increase throughput, lower costs and produce safer more efficacious drugs. This can be achieved through advances in cell line engineering, process development of cell culture, development of chemically defined media and increased emphasis on product characterization. In the first part, this review provides a historical perspective on approved biotherapeutics by regulatory bodies which pave the way for next-generation products (including gene therapy). In the second part, it focuses on the application of in vitro and in vivo cell line engineering approaches, modern process development improvements including continuous manufacturing, recent developments in media formulation, and improvements in critical quality attribute determinations for products produced predominantly in mammalian cells.


Asunto(s)
Técnicas de Cultivo de Célula , Animales , Células CHO , Cricetinae , Cricetulus , Medios de Cultivo , Proteínas Recombinantes/genética
19.
Prev Vet Med ; 179: 105006, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32361640

RESUMEN

Blood biomarkers may be used to detect physiological imbalance and potential disease. However, blood sampling is difficult and expensive, and not applicable in commercial settings. Instead, individual milk samples are readily available at low cost, can be sampled easily and analysed instantly. The present observational study sampled blood and milk from 234 Holstein dairy cows from experimental herds in six European countries. The objective was to compare the use of three different sets of milk biomarkers for identification of cows in physiological imbalance and thus at risk of developing metabolic or infectious diseases. Random forests was used to predict body energy balance (EBAL), index for physiological imbalance (PI-index) and three clusters differentiating the metabolic status of cows created on basis of concentrations of plasma glucose, ß-hydroxybutyrate (BHB), non-esterified fatty acids (NEFA) and serum IGF-1. These three metabolic clusters were interpreted as cows in balance, physiological imbalance and "intermediate cows" with physiological status in between. The three sets of milk biomarkers used for prediction were: milk Fourier transform mid-IR (FT-MIR) spectra, 19 immunoglobulin G (IgG) N-glycans and 8 milk metabolites and enzymes (MME). Blood biomarkers were sampled twice; around 14 days after calving (days in milk (DIM)) and around 35 DIM. MME and FT-MIR were sampled twice weekly 1-50 DIM whereas IgG N-glycan were measured only four times. Performances of EBAL and PI-index predictions were measured by coefficient of determination (R2cv) and root mean squared error (RMSEcv) from leave-one-cow-out cross-validation (cv). For metabolic clusters, performance was measured by sensitivity, specificity and global accuracy from this cross-validation. Best prediction of PI-index was obtained by MME (R2cv = 0.40 (95 % CI: 0.29-0.50) at 14 DIM and 0.35 (0.23-0.44) at 35 DIM) while FT-MIR showed a better performance than MME for prediction of EBAL (R2cv = 0.28 (0.24-0.33) vs 0.21 (0.18-0.25)). Global accuracies of predicting metabolic clusters from MME and FT-MIR were at the same level ranging from 0.54 (95 % CI: 0.39-0.68) to 0.65 (0.55-0.75) for MME and 0.51 (0.37-0.65) to 0.68 (0.53-0.81) for FT-MIR. R2cv and accuracies were lower for IgG N-glycans. In conclusion, neither EBAL nor PI-index were sufficiently well predicted to be used as a management tool for identification of risk cows. MME and FT-MIR may be used to predict the physiological status of the cows, while the use of IgG N-glycans for prediction still needs development. Nevertheless, accuracies need to be improved and a larger training data set is warranted.


Asunto(s)
Ácido 3-Hidroxibutírico/metabolismo , Bovinos/fisiología , Industria Lechera/métodos , Ácidos Grasos no Esterificados/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Leche/química , Animales , Bélgica , Biomarcadores/metabolismo , Dinamarca , Femenino , Alemania , Irlanda , Italia , Irlanda del Norte
20.
Front Oncol ; 10: 1218, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850359

RESUMEN

Background: Glycosylation is one of the most fundamental post-translational modifications. Importantly, glycosylation is altered in many cancers. These alterations have been proven to impact on tumor progression and to promote tumor cell survival. From the literature, it is known that there is a clear link between chemoresistance and hypoxia, hypoxia and epigenetics and more recently glycosylation and epigenetics. Methods and Results: Our objective was to investigate these differential parameters, in an in vitro model of ovarian and breast cancer. Ovarian (A2780, A2780cis, PEO1, PEO4) and triple negative breast cancer (TNBC) (MDA-MB-231 and MDA-MB-436) cells were exposed to differential hypoxic conditions (0.5-2% O2) and compared to normoxia (21% O2). Results demonstrated that in hypoxic conditions some significant changes in glycosylation on the secreted N-glycans from the ovarian and breast cancer cell lines were observed. These included, alterations in oligomannosylated, bisected glycans, glycans with polylactosamine extensions, in branching, galactosylation and sialylation in all cell lines except for PEO1. In general, hypoxia exposed ovarian and TNBC cells also displayed increased epithelial to mesenchymal transition (EMT) and migration, with a greater effect seen in the 0.5% hypoxia exposed samples compared to 1 and 2% hypoxia (p ≤ 0.05). SiRNA transient knock down of GATA2/3 transcription factors resulted in a decrease in the expression of glycosyltransferases ST3GAL4 and MGAT5, which are responsible for sialylation and branching, respectively. Conclusions: These glycan changes are known to be integral to cancer cell survival and metastases, suggesting a possible mechanism of action, linking GATA2 and 3, and invasiveness of both ovarian and TNBC cells in vitro.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA