Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(10): e2214561120, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36853940

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped positive stranded RNA virus which has caused the recent deadly pandemic called COVID-19. The SARS-CoV-2 virion is coated with a heavily glycosylated Spike glycoprotein which is responsible for attachment and entry into target cells. One, as yet unexploited strategy for preventing SARS-CoV-2 infections, is the targeting of the glycans on Spike. Lectins are carbohydrate-binding proteins produced by plants, algae, and cyanobacteria. Some lectins can neutralize enveloped viruses displaying external glycoproteins, offering an alternative therapeutic approach for the prevention of infection with virulent ß-coronaviruses, such as SARS-CoV-2. Here we show that the cyanobacterial lectin cyanovirin-N (CV-N) can selectively target SARS-CoV-2 Spike oligosaccharides and inhibit SARS-CoV-2 infection in vitro and in vivo. CV-N neutralizes Delta and Omicron variants in vitro better than earlier circulating viral variants. CV-N binds selectively to Spike with a Kd as low as 15 nM and a stoichiometry of 2 CV-N: 1 Spike but does not bind to the receptor binding domain (RBD). Further mapping of CV-N binding sites on Spike shows that select high-mannose oligosaccharides in the S1 domain of Spike are targeted by CV-N. CV-N also reduced viral loads in the nares and lungs in vivo to protect hamsters against a lethal viral challenge. In summary, we present an anti-coronavirus agent that works by an unexploited mechanism and prevents infection by a broad range of SARS-CoV-2 strains.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Oligosacáridos/farmacología , Lectinas
2.
J Nat Prod ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970504

RESUMEN

The isolation, structure determination, and biological evaluation of constituents from the organic extract of Turraea delphinensis Wahlert (Meliaceae) resulted in the isolation of 51 secondary metabolites, including 14 new terpenoids (six cycloartanes, four tirucallanes/euphanes, three limonoids, and a 7-keto sterol). Among the new compounds, 1 is the first triterpenoid with a trioxaspiro[4.4]nonane side chain, while 11-13 are the first 17-γ-lactone tetranortriterpenoids with four oxygenated functional groups at C-1, -3, -6, and -7. The isolated compounds were evaluated for antiproliferative activity against five human tumor cell lines, including a vinblastine-resistant cell line.

3.
J Nat Prod ; 87(2): 266-275, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38251859

RESUMEN

Four cytotoxic heptacyclic caged-xanthones [gambogefic acids B-E (1-4)], a cytotoxic hexacyclic caged-xanthone [garcilatelic acid (5)], and four biphenyl derivatives [garcilatelibiphenyls A-D (6-9)] were newly isolated in a phytochemical study of a 50% MeOH/CH2Cl2 extract of Garcinia lateriflora (Clusiaceae). The isolated compounds were evaluated for antiproliferative activity against five human tumor cell lines including a vincristine-resistant line. The new caged-xanthones displayed potent activity with IC50 values from 0.5 to 6.7 µM against all tested tumor cell lines.


Asunto(s)
Antineoplásicos Fitogénicos , Garcinia , Xantonas , Humanos , Compuestos de Bifenilo , Línea Celular Tumoral , Xantonas/farmacología , Estructura Molecular , Antineoplásicos Fitogénicos/farmacología
4.
J Nat Prod ; 87(2): 415-423, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38291771

RESUMEN

Pyrrole-containing natural products form a large group of structurally diverse compounds that occur in both terrestrial and marine organisms. In the present study the formation of trideuteromethylated artifacts of pyrrole-containing natural products was investigated, focusing on the discorhabdins. Three deuterated discorhabdins, 1, 3, and 5, were identified to be isolation procedure artifacts caused by the presence of DMSO-d6 during NMR sample preparation and handling. Three additional semisynthetic derivatives, 7-9, were made during the investigation of the mechanism of formation, which was shown to be driven by trideuteromethyl radicals in the presence of water, methanol, TFA, and traces of iron in the deuterated solvent. Generation of trideuteromethylated artifacts was also confirmed for other classes of pyrrole-containing metabolites, namely, makaluvamines, tambjamines, and dibromotryptamines, which had also been dissolved in DMSO-d6 during the structure elucidation process. Semisynthetic discorhabdins were assessed for antiproliferative activity against a panel of human tumor cell lines, and 14-trideuteromethyldiscorhabdin L (3) averaged low micromolar potency.


Asunto(s)
Productos Biológicos , Dimetilsulfóxido , Humanos , Dimetilsulfóxido/química , Pirroles/química , Productos Biológicos/farmacología , Artefactos , Solventes/química
5.
J Nat Prod ; 87(2): 332-339, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38294825

RESUMEN

Neopetrotaurines A-C (1-3), unusual alkaloids possessing two isoquinoline-derived moieties that are linked via a unique taurine bridge, were isolated from a Neopetrosia sp. marine sponge. These new compounds have proton-deficient structural scaffolds that are difficult to unambiguously assign using only conventional 2- and 3-bond 1H-13C and 1H-15N heteronuclear correlation data. Thus, the application of LR-HSQMBC and HMBC NMR experiments optimized to detect 4- and 5-bond long-range 1H-13C heteronuclear correlations facilitated the structure elucidation of these unusual taurine-bridged marine metabolites. Neopetrotaurines A-C (1-3) showed significant inhibition of transcription driven by the oncogenic fusion protein PAX3-FOXO1, which is associated with alveolar rhabdomyosarcoma, and cytotoxic activity against PAX3-FOXO1-positive cell lines.


Asunto(s)
Alcaloides , Poríferos , Rabdomiosarcoma Alveolar , Animales , Rabdomiosarcoma Alveolar/metabolismo , Línea Celular , Alcaloides/farmacología , Isoquinolinas/farmacología
6.
Molecules ; 29(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38338394

RESUMEN

Eight vilasinin-class limonoids, including the unusually chlorinated rubescins K-M (1-3), the 2,3-epoxylated rubescin N (4), and rubescins O-R (5-8), were newly isolated from Trichilia rubescens. The structures of the isolated compounds were determined through spectroscopic and spectrometric analyses, as well as ECD calculations. The natural occurrence of chlorinated limonoids 1-3 was confirmed by chemical methods and HPLC analysis of a roughly fractionated portion of the plant extract. Eight selected limonoids, including previously known and new compounds, were evaluated for antiproliferative activity against five human tumor cell lines. All tested limonoids, except 8, exhibited significant potency, with IC50 values of <10 µM; in particular, limonoid 14 strongly inhibited tumor cell growth, with IC50 values of 0.54-2.06 µM against all tumor cell lines, including multi-drug-resistant cells.


Asunto(s)
Limoninas , Meliaceae , Humanos , Limoninas/química , Línea Celular Tumoral , Meliaceae/química , Estructura Molecular
7.
Biochemistry ; 62(14): 2115-2127, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37341186

RESUMEN

Host cell infection by SARS-CoV-2, similar to that by HIV-1, is driven by a conformationally metastable and highly glycosylated surface entry protein complex, and infection by these viruses has been shown to be inhibited by the mannose-specific lectins cyanovirin-N (CV-N) and griffithsin (GRFT). We discovered in this study that CV-N not only inhibits SARS-CoV-2 infection but also leads to irreversibly inactivated pseudovirus particles. The irreversibility effect was revealed by the observation that pseudoviruses first treated with CV-N and then washed to remove all soluble lectin did not recover infectivity. The infection inhibition of SARS-CoV-2 pseudovirus mutants with single-site glycan mutations in spike suggested that two glycan clusters in S1 are important for both CV-N and GRFT inhibition: one cluster associated with the RBD (receptor binding domain) and the second with the S1/S2 cleavage site. We observed lectin antiviral effects with several SARS-CoV-2 pseudovirus variants, including the recently emerged omicron, as well as a fully infectious coronavirus, therein reflecting the breadth of lectin antiviral function and the potential for pan-coronavirus inactivation. Mechanistically, observations made in this work indicate that multivalent lectin interaction with S1 glycans is likely a driver of the lectin infection inhibition and irreversible inactivation effect and suggest the possibility that lectin inactivation is caused by an irreversible conformational effect on spike. Overall, lectins' irreversible inactivation of SARS-CoV-2, taken with their breadth of function, reflects the therapeutic potential of multivalent lectins targeting the vulnerable metastable spike before host cell encounter.


Asunto(s)
COVID-19 , Lectinas , Humanos , Lectinas/farmacología , Lectinas/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Antivirales/farmacología , Polisacáridos/farmacología , Polisacáridos/metabolismo
8.
J Nat Prod ; 86(7): 1855-1861, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37368408

RESUMEN

Two new caulamidines C (2) and D (4) and three isocaulamidines B, C, and D (1, 3, and 5) along with the known compound caulamidine B (6) were isolated from the marine ascidian Polyandrocarpa sp. Their structures were elucidated by analysis of nuclear magnetic resonance (NMR) and electronic circular dichroism (ECD) data. Isocaulamidines have an altered pattern of N-methyl substitution (N-15 vs N-13 in the caulamidines) with a concomitant double-bond rearrangement to provide a new C-14/N-13 imine functionality. Caulamidine C (2) and isocaulamidine C (3) are the first members of this alkaloid family with two chlorine substituents in the core 6H-2,6-naphthyridine ring system.


Asunto(s)
Alcaloides , Antineoplásicos , Urocordados , Animales , Urocordados/química , Alcaloides/farmacología , Alcaloides/química , Espectroscopía de Resonancia Magnética , Imagen por Resonancia Magnética , Estructura Molecular
9.
J Nat Prod ; 86(10): 2283-2293, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37843072

RESUMEN

The DNAJB1-PRKACA oncogenic gene fusion results in an active kinase enzyme, J-PKAcα, that has been identified as an attractive antitumor target for fibrolamellar hepatocellular carcinoma (FLHCC). A high-throughput assay was used to identify inhibitors of J-PKAcα catalytic activity by screening the NCI Program for Natural Product Discovery (NPNPD) prefractionated natural product library. Purification of the active agent from a single fraction of an Aplidium sp. marine tunicate led to the discovery of two unprecedented alkaloids, aplithianines A (1) and B (2). Aplithianine A (1) showed potent inhibition against J-PKAcα with an IC50 of ∼1 µM in the primary screening assay. In kinome screening, 1 inhibited wild-type PKA with an IC50 of 84 nM. Further mechanistic studies including cocrystallization and X-ray diffraction experiments revealed that 1 inhibited PKAcα catalytic activity by competitively binding to the ATP pocket. Human kinome profiling of 1 against a panel of 370 kinases revealed potent inhibition of select serine/threonine kinases in the CLK and PKG families with IC50 values in the range ∼11-90 nM. An efficient, four-step total synthesis of 1 has been accomplished, enabling further evaluation of aplithianines as biologically relevant kinase inhibitors.


Asunto(s)
Productos Biológicos , Carcinoma Hepatocelular , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas , Carcinoma Hepatocelular/patología , Serina , Proteínas del Choque Térmico HSP40/química , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo
10.
J Nat Prod ; 85(5): 1419-1427, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35465663

RESUMEN

Chemical investigation of the marine hydroid Dentitheca habereri led to the identification of eight new diacylated zoanthoxanthin alkaloids, named dentithecamides A-H (1-8), along with three previously reported analogues, zoamides B-D (9-11). The structures of compounds 1-11 were elucidated by spectroscopic and spectrometric analyses, including IR, HRESIMS, and NMR experiments, and by comparison with literature data. Compounds 1-11 are the first zoanthoxanthin alkaloids to be reported from a hydroid. Dentithecamides A (1) and B (2) along with zoamides B-D (9-11), which all share a conformationally mobile cycloheptadiene core, inhibited PAX3-FOXO1 regulated transcriptional activity and thus provided a structural framework for the potential development of more potent PAX3-FOXO1 inhibitors.


Asunto(s)
Alcaloides , Imidazoles , Alcaloides/química
11.
Plant Cell Rep ; 41(4): 1013-1023, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35178612

RESUMEN

KEY MESSAGE: Rice-produced SD1 retains its physicochemical properties and provides efficient pre-exposure HIV-1 prophylaxis against infection in vitro. Scytovirin (SVN) is an HIV-neutralizing lectin that features two structural domains (SD1 and SD2) that bind to HIV-1 envelope glycoproteins. We expressed SD1 in rice seeds as a potential large-scale production platform and confirmed that rice-derived SD1 binds the HIV-1 envelope glycoprotein gp120 in vitro. We analyzed the thermodynamic properties of SD1 compared to full-size SVN (produced in E. coli) by isothermal titration and differential scanning calorimetry to characterize the specific interactions between SVN/SD1 and gp120 as well as to high-mannose oligosaccharides. SVN bound with moderate affinity (Kd = 1.5 µM) to recombinant gp120, with 2.5-fold weaker affinity to nonamannoside (Kd of 3.9 µM), and with tenfold weaker affinity to tetramannoside (13.8 µM). The melting temperature (Tm) of full-size SVN was 59.1 °C and the enthalpy of unfolding (ΔHunf) was 16.4 kcal/mol, but the Tm fell when SVN bound to nonamannoside (56.5 °C) and twice as much energy was required for unfolding (ΔHunf = 33.5 kcal/mol). Interestingly, binding to tetramannoside destabilized the structure of SD1 (ΔTm ~ 11.5 °C) and doubled the enthalpy of unfolding, suggesting a dimerization event. The similar melting phenomenon shared by SVN and SD1 in the presence of oligomannose confirmed their conserved oligosaccharide-binding mechanisms. SD1 expressed in transgenic rice was able to neutralize HIV-1 in vitro. SD1 expressed in rice, therefore, is suitable as a microbicide component.


Asunto(s)
VIH-1 , Oryza , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/metabolismo , Lectinas/química , Lectinas/metabolismo , Proteínas de la Membrana/metabolismo , Oryza/genética , Oryza/metabolismo , Sindactilia
12.
Plant Biotechnol J ; 19(10): 1901-1920, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34182608

RESUMEN

Infectious diseases, also known as transmissible or communicable diseases, are caused by pathogens or parasites that spread in communities by direct contact with infected individuals or contaminated materials, through droplets and aerosols, or via vectors such as insects. Such diseases cause ˜17% of all human deaths and their management and control places an immense burden on healthcare systems worldwide. Traditional approaches for the prevention and control of infectious diseases include vaccination programmes, hygiene measures and drugs that suppress the pathogen, treat the disease symptoms or attenuate aggressive reactions of the host immune system. The provision of vaccines and biologic drugs such as antibodies is hampered by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, particularly in developing countries where infectious diseases are prevalent and poorly controlled. Molecular farming, which uses plants for protein expression, is a promising strategy to address the drawbacks of current manufacturing platforms. In this review article, we consider the potential of molecular farming to address healthcare demands for the most prevalent and important epidemic and pandemic diseases, focussing on recent outbreaks of high-mortality coronavirus infections and diseases that disproportionately affect the developing world.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Enfermedades Transmisibles/epidemiología , Humanos , Pandemias/prevención & control , SARS-CoV-2
13.
J Nat Prod ; 84(3): 750-761, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33226219

RESUMEN

A fundamental factor in natural product drug discovery programs is the necessity to identify the active component(s) from complex chemical mixtures. Whereas this has traditionally been accomplished using bioassay-guided fractionation, we questioned whether alternative techniques could supplement and, in some cases, even supplant this approach. We speculated that a combination of ligand-fishing methods and modern analytical tools (e.g., LC-MS and online natural product databases) offered a route to enhance natural product drug discovery. Herein, a candidate solution referred to as the lickety-split ligand-affinity-based molecular angling system (LLAMAS) is described. This approach utilizes an ultrafiltration-based LC-PDA-MS/MS-guided DNA-binding assay in combination with the (i) Global Natural Products Social Molecular Networking, (ii) Dictionary of Natural Products, and (iii) SciFinder platforms to identify DNA binders in complex chemical mixtures. LLAMAS was initially vetted in tests using known small-molecule DNA binders and then optimized to a 96-well plate-based format. A set of 332 plant samples used in traditional Chinese medicine was screened for DNA-binding activity with LLAMAS, resulting in the identification of seven DNA-binding molecules, including berberine (12), palmatine (13), coptisine (14), fangchinoline (15), tetrandrine (16), daurisoline (17), and dauricine (18). These results demonstrate that LLAMAS is an effective natural product discovery platform for the efficient identification and dereplication of DNA-binding molecules from complex mixtures.


Asunto(s)
Productos Biológicos/química , ADN/química , Descubrimiento de Drogas/métodos , Cromatografía Liquida , Espectrometría de Masas en Tándem , Ultrafiltración
14.
J Nat Prod ; 84(6): 1831-1837, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34038132

RESUMEN

An extract of a Sinularia sp. soft coral showed inhibitory activity against the E3-ubiquitin ligase casitas B-lineage lymphoma proto-oncogene B (Cbl-b). Subsequent bioassay-guided separation of the extract provided a series of terpenoid-derived spermidine and spermine amides that were named sinularamides A-G (1-7). Compounds 1-7 represent new natural products; however, sinularamide A (1) was previously reported as a synthetic end product. The structures of sinularamides A-G (1-7) were elucidated by analysis of spectroscopic and spectrometric data from NMR, IR, and HRESIMS experiments and by comparison with literature data. All of the isolated compounds showed Cbl-b inhibitory activities with IC50 values that ranged from approximately 6.5 to 33 µM.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Antozoos/química , Proteínas Proto-Oncogénicas c-cbl/antagonistas & inhibidores , Espermidina/farmacología , Espermina/farmacología , Terpenos/farmacología , Animales , Estructura Molecular , Palau , Espermidina/aislamiento & purificación , Espermina/aislamiento & purificación , Terpenos/aislamiento & purificación
15.
J Nat Prod ; 84(11): 3001-3007, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34677966

RESUMEN

The pressing need for SARS-CoV-2 controls has led to a reassessment of strategies to identify and develop natural product inhibitors of zoonotic, highly virulent, and rapidly emerging viruses. This review article addresses how contemporary approaches involving computational chemistry, natural product (NP) and protein databases, and mass spectrometry (MS) derived target-ligand interaction analysis can be utilized to expedite the interrogation of NP structures while minimizing the time and expense of extraction, purification, and screening in BioSafety Laboratories (BSL)3 laboratories. The unparalleled structural diversity and complexity of NPs is an extraordinary resource for the discovery and development of broad-spectrum inhibitors of viral genera, including Betacoronavirus, which contains MERS, SARS, SARS-CoV-2, and the common cold. There are two key technological advances that have created unique opportunities for the identification of NP prototypes with greater efficiency: (1) the application of structural databases for NPs and target proteins and (2) the application of modern MS techniques to assess protein-ligand interactions directly from NP extracts. These approaches, developed over years, now allow for the identification and isolation of unique antiviral ligands without the immediate need for BSL3 facilities. Overall, the goal is to improve the success rate of NP-based screening by focusing resources on source materials with a higher likelihood of success, while simultaneously providing opportunities for the discovery of novel ligands to selectively target proteins involved in viral infection.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Productos Biológicos/farmacología , Descubrimiento de Drogas , Biología Computacional , Bases de Datos de Compuestos Químicos , Bases de Datos de Proteínas , Ligandos , Espectrometría de Masas , Mapeo de Interacción de Proteínas , SARS-CoV-2/efectos de los fármacos
16.
Mar Drugs ; 19(8)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34436255

RESUMEN

Over 182 million confirmed cases of COVID-19 and more than 4 million deaths have been reported to date around the world. It is essential to identify broad-spectrum antiviral agents that may prevent or treat infections by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) but also by other coronaviruses that may jump the species barrier in the future. We evaluated the antiviral selectivity of griffithsin and sulfated and non-sulfated polysaccharides against SARS-CoV-1 and SARS-CoV-2 using a cytotoxicity assay and a cell-based pseudoviral model. The half-maximal cytotoxic concentration (CC50) and half-maximal effective concentration (EC50) were determined for each compound, using a dose-response-inhibition analysis on GraphPad Prism v9.0.2 software (San Diego, CA, USA). The therapeutic index (TI = CC50/EC50) was calculated for each compound. The potential synergistic, additive, or antagonistic effect of different compound combinations was determined by CalcuSyn v1 software (Biosoft, Cambridge, UK), which estimated the combination index (CI) values. Iota and lambda carrageenan showed the most potent antiviral activity (EC50 between 3.2 and 7.5 µg/mL). Carrageenan and griffithsin combinations exhibited synergistic activity (EC50 between 0.2 and 3.8 µg/mL; combination index <1), including against recent SARS-CoV-2 mutations. The griffithsin and carrageenan combination is a promising candidate to prevent or treat infections by SARS-CoV-1 and SARS-CoV-2.


Asunto(s)
Antivirales/farmacología , Carragenina/farmacología , Lectinas de Plantas/farmacología , SARS-CoV-2/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , COVID-19/virología , Sinergismo Farmacológico , Células HeLa , Humanos , Modelos Biológicos , Polisacáridos/farmacología , Tratamiento Farmacológico de COVID-19
17.
Mar Drugs ; 19(7)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202500

RESUMEN

An extract of the coralline demosponge Astrosclera willeyana inhibited the ubiquitin ligase activity of the immunomodulatory protein Cbl-b. The bioassay-guided separation of the extract provided ten active compounds, including three new N-methyladenine-containing diterpenoids, agelasines W-Y (1-3), a new bromopyrrole alkaloid, N(1)-methylisoageliferin (4), and six known ageliferin derivatives (5-10). The structures of the new compounds were elucidated from their spectroscopic and spectrometric data, including IR, HRESIMS, and NMR, and by comparison with spectroscopic data in the literature. While all of the isolated compounds showed Cbl-b inhibitory activities, ageliferins (4-10) were the most potent metabolites, with IC50 values that ranged from 18 to 35 µM.


Asunto(s)
Diterpenos/farmacología , Imidazoles/metabolismo , Poríferos , Pirroles/metabolismo , Animales , Organismos Acuáticos , Diterpenos/química , Humanos , Estructura Molecular , Fitoterapia , Tonga
18.
Proc Natl Acad Sci U S A ; 115(33): E7854-E7862, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30061386

RESUMEN

The transmission of HIV can be prevented by the application of neutralizing monoclonal antibodies and lectins. Traditional recombinant protein manufacturing platforms lack sufficient capacity and are too expensive for developing countries, which suffer the greatest disease burden. Plants offer an inexpensive and scalable alternative manufacturing platform that can produce multiple components in a single plant, which is important because multiple components are required to avoid the rapid emergence of HIV-1 strains resistant to single microbicides. Furthermore, crude extracts can be used directly for prophylaxis to avoid the massive costs of downstream processing and purification. We investigated whether rice could simultaneously produce three functional HIV-neutralizing proteins (the monoclonal antibody 2G12, and the lectins griffithsin and cyanovirin-N). Preliminary in vitro tests showed that the cocktail of three proteins bound to gp120 and achieved HIV-1 neutralization. Remarkably, when we mixed the components with crude extracts of wild-type rice endosperm, we observed enhanced binding to gp120 in vitro and synergistic neutralization when all three components were present. Extracts of transgenic plants expressing all three proteins also showed enhanced in vitro binding to gp120 and synergistic HIV-1 neutralization. Fractionation of the rice extracts suggested that the enhanced gp120 binding was dependent on rice proteins, primarily the globulin fraction. Therefore, the production of HIV-1 microbicides in rice may not only reduce costs compared to traditional platforms but may also provide functional benefits in terms of microbicidal potency.


Asunto(s)
Fármacos Anti-VIH , Anticuerpos Monoclonales , Endospermo , Anticuerpos Anti-VIH , Proteína gp120 de Envoltorio del VIH/antagonistas & inhibidores , VIH-1/química , Oryza , Plantas Modificadas Genéticamente , Fármacos Anti-VIH/química , Fármacos Anti-VIH/metabolismo , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/genética , Endospermo/química , Endospermo/genética , Endospermo/metabolismo , Anticuerpos Anti-VIH/biosíntesis , Anticuerpos Anti-VIH/química , Anticuerpos Anti-VIH/genética , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/metabolismo , Oryza/química , Oryza/genética , Oryza/metabolismo , Plantas Modificadas Genéticamente/química , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
19.
Magn Reson Chem ; 59(5): 534-539, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-31379005

RESUMEN

The indolocarbazole family of bisindole alkaloids is best known for the natural product staurosporine, a protein kinase C inhibitor that belongs to the indolo[2,3-a]carbazole structural class. A large number of other indolo[2,3-a]carbazoles have subsequently been isolated and identified, but other isomeric forms of indolocarbazole natural products have rarely been reported. An extract of the marine sponge Damiria sp., which represents an understudied genus, provided two novel alkaloids named damirines A (1) and B (2). Their structures were assigned by comprehensive NMR spectroscopic analyses, and for compound 2, this included application of the LR-HSQMBC pulse sequence, a long-range heteronuclear correlation experiment that has particular utility for defining proton-deficient scaffolds. The damirines represent a new hexacyclic carbon-nitrogen framework comprised of an indolo[3,2-a]carbazole fused with either an aminoimidazole or a imidazolone ring. Compound 1 showed selective cytotoxic properties toward six different cell lines in the NCI-60 cancer screen.


Asunto(s)
Antineoplásicos/farmacología , Productos Biológicos/farmacología , Carbazoles/farmacología , Alcaloides Indólicos/farmacología , Poríferos/química , Animales , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Carbazoles/química , Carbazoles/aislamiento & purificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Alcaloides Indólicos/química , Alcaloides Indólicos/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Conformación Molecular , Estereoisomerismo
20.
Molecules ; 26(12)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208349

RESUMEN

A new 11 amino acid linear peptide named roseabol A (1) and the known compound 13-oxo-trans-9,10-epoxy-11(E)-octadecenoic acid (2) were isolated from the fungus Clonostachys rosea. Combined NMR and MS analysis revealed that roseabol A (1) contained amino acid residues characteristic of the peptaibol family of peptides such as isovaline, α-aminoisobutyric acid, hydroxyproline, leucinol, and an N-terminal isovaleric acid moiety. The amino acid sequence was established by a combination of NMR studies and tandem MS fragmentation analyses, and the absolute configurations of the constituent amino acids of 1 were determined by the advanced Marfey's method. Compound 2 showed inhibitory activity against Merkel cell carcinoma, a rare and difficult-to-treat type of skin cancer, with an IC50 value of 16.5 µM.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Células de Merkel/tratamiento farmacológico , Hypocreales/química , Peptaiboles/química , Peptaiboles/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Secuencia de Aminoácidos , Antineoplásicos/química , Carcinoma de Células de Merkel/química , Carcinoma de Células de Merkel/metabolismo , Línea Celular Tumoral , Humanos , Espectroscopía de Resonancia Magnética/métodos , Estructura Molecular , Neoplasias Cutáneas/química , Neoplasias Cutáneas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA