Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Paediatr Respir Rev ; 39: 32-39, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34417121

RESUMEN

Mathematical modelling has played a pivotal role in understanding the epidemiology of and guiding public health responses to the ongoing coronavirus disease of 2019 (COVID-19) pandemic. Here, we review the role of epidemiological models in understanding evolving epidemic characteristics, including the effects of vaccination and Variants of Concern (VoC). We highlight ways in which models continue to provide important insights, including (1) calculating the herd immunity threshold and evaluating its limitations; (2) verifying that nascent vaccines can prevent severe disease, infection, and transmission but may be less efficacious against VoC; (3) determining optimal vaccine allocation strategies under efficacy and supply constraints; and (4) determining that VoC are more transmissible and lethal than previously circulating strains, and that immune escape may jeopardize vaccine-induced herd immunity. Finally, we explore how models can help us anticipate and prepare for future stages of COVID-19 epidemiology (and that of other diseases) through forecasts and scenario projections, given current uncertainties and data limitations.


Asunto(s)
Vacunas contra la COVID-19/provisión & distribución , COVID-19/epidemiología , COVID-19/prevención & control , Control de Enfermedades Transmisibles/organización & administración , Neumonía Viral/epidemiología , Neumonía Viral/prevención & control , Humanos , Modelos Teóricos , Pandemias/prevención & control , Neumonía Viral/virología , SARS-CoV-2
2.
Artículo en Inglés | MEDLINE | ID: mdl-37946717

RESUMEN

Objective: Circulation patterns of influenza and other respiratory viruses have been globally disrupted since the emergence of coronavirus disease (COVID-19) and the introduction of public health and social measures (PHSMs) aimed at reducing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission. Methods: We reviewed respiratory virus laboratory data, Google mobility data and PHSMs in five geographically diverse regions in Australia and New Zealand. We also described respiratory virus activity from January 2017 to August 2021. Results: We observed a change in the prevalence of circulating respiratory viruses following the emergence of SARS-CoV-2 in early 2020. Influenza activity levels were very low in all regions, lower than those recorded in 2017-2019, with less than 1% of laboratory samples testing positive for influenza virus. In contrast, rates of human rhinovirus infection were increased. Respiratory syncytial virus (RSV) activity was delayed; however, once it returned, most regions experienced activity levels well above those seen in 2017-2019. The timing of the resurgence in the circulation of both rhinovirus and RSV differed within and between the two countries. Discussion: The findings of this study suggest that as domestic and international borders are opened up and other COVID-19 PHSMs are lifted, clinicians and public health professionals should be prepared for resurgences in influenza and other respiratory viruses. Recent patterns in RSV activity suggest that these resurgences in non-COVID-19 viruses have the potential to occur out of season and with increased impact.


Asunto(s)
COVID-19 , Gripe Humana , Humanos , Gripe Humana/epidemiología , Nueva Zelanda/epidemiología , Pandemias , COVID-19/epidemiología , SARS-CoV-2 , Australia/epidemiología
3.
Artículo en Inglés | MEDLINE | ID: mdl-36154657

RESUMEN

As part of its role in the World Health Organization's (WHO) Global Influenza Surveillance and Response System (GISRS), the WHO Collaborating Centre for Reference and Research on Influenza in Melbourne received a total of 2,393 human influenza positive samples between 1 January 2020 and 31 December 2021 (2020: n = 2,021 samples; 2021: n = 372 samples). Viruses were analysed for their antigenic, genetic and antiviral susceptibility properties. Selected viruses were propagated in qualified cells or embryonated hen's eggs for potential use in seasonal influenza virus vaccines. During 2020-2021, influenza A viruses (A(H1N1)pdm09 in 2020 and A(H3N2) in 2021) predominated over influenza B viruses. In 2020, the majority of A(H1N1)pdm09, A(H3N2) and influenza B viruses analysed at the Centre were found to be antigenically similar to the respective WHO recommended vaccine strains for the southern hemisphere in 2020. In 2021, the majority of A(H1N1)pdm09 and A(H3N2) viruses were found to be antigenically distinct relative to the WHO recommended vaccine strains for the southern hemisphere in 2021. Of the influenza B viruses analysed at the Centre, 46.7% were found to be antigenically distinct to the respective WHO recommended vaccine strains. Of 1,538 samples tested for susceptibility to the neuraminidase inhibitors oseltamivir and zanamivir (in 2020, n = 1,374; in 2021, n = 164), two A(H1N1)pdm09 viruses showed highly reduced inhibition against oseltamivir, and one A(H1N1)pdm09 virus showed highly reduced inhibition against zanamivir. All of these samples were received in 2020.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H3N2 del Virus de la Influenza A , Virus de la Influenza B , Gripe Humana , Antivirales/farmacología , Australia/epidemiología , Farmacorresistencia Viral/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Virus de la Influenza B/genética , Vacunas contra la Influenza , Gripe Humana/epidemiología , Gripe Humana/virología , Neuraminidasa , Oseltamivir/farmacología , Organización Mundial de la Salud , Zanamivir/farmacología
4.
Crit Care Resusc ; 23(3): 300-307, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-38046069

RESUMEN

Objectives: To validate a real-time Intensive Care Unit (ICU) Activity Index as a marker of ICU strain from daily data available from the Critical Health Resource Information System (CHRIS), and to investigate the association between this Index and the need to transfer critically ill patients during the coronavirus disease 2019 (COVID-19) pandemic in Victoria, Australia. Design: Retrospective observational cohort study. Setting: All 45 hospitals with an ICU in Victoria, Australia. Participants: Patients in all Victorian ICUs and all critically ill patients transferred between Victorian hospitals from 27 June to 6 September 2020. Main outcome measure: Acute interhospital transfer of one or more critically ill patients per day from one site to an ICU in another hospital. Results: 150 patients were transported over 61 days from 29 hospitals (64%). ICU Activity Index scores were higher on days when critical care transfers occurred (median, 1.0 [IQR, 0.4-1.7] v 0.6 [IQR, 0.3-1.2]; P < 0.001). Transfers were more common on days of higher ICU occupancy, higher numbers of ventilated or COVID-19 patients, and when more critical care staff were unavailable. The highest ICU Activity Index scores were observed at hospitals in north-western Melbourne, where the COVID-19 disease burden was greatest. After adjusting for confounding factors, including occupancy and lack of available ICU staff, a rising ICU Activity Index score was associated with an increased risk of a critical care transfer (odds ratio, 4.10; 95% CI, 2.34-7.18; P < 0.001). Conclusions: The ICU Activity Index appeared to be a valid marker of ICU strain during the COVID-19 pandemic. It may be useful as a real-time clinical indicator of ICU activity and predict the need for redistribution of critical ill patients.

5.
Ann Am Thorac Soc ; 17(7): 879-891, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32267771

RESUMEN

There is broad interest in improved methods to generate robust evidence regarding best practice, especially in settings where patient conditions are heterogenous and require multiple concomitant therapies. Here, we present the rationale and design of a large, international trial that combines features of adaptive platform trials with pragmatic point-of-care trials to determine best treatment strategies for patients admitted to an intensive care unit with severe community-acquired pneumonia. The trial uses a novel design, entitled "a randomized embedded multifactorial adaptive platform." The design has five key features: 1) randomization, allowing robust causal inference; 2) embedding of study procedures into routine care processes, facilitating enrollment, trial efficiency, and generalizability; 3) a multifactorial statistical model comparing multiple interventions across multiple patient subgroups; 4) response-adaptive randomization with preferential assignment to those interventions that appear most favorable; and 5) a platform structured to permit continuous, potentially perpetual enrollment beyond the evaluation of the initial treatments. The trial randomizes patients to multiple interventions within four treatment domains: antibiotics, antiviral therapy for influenza, host immunomodulation with extended macrolide therapy, and alternative corticosteroid regimens, representing 240 treatment regimens. The trial generates estimates of superiority, inferiority, and equivalence between regimens on the primary outcome of 90-day mortality, stratified by presence or absence of concomitant shock and proven or suspected influenza infection. The trial will also compare ventilatory and oxygenation strategies, and has capacity to address additional questions rapidly during pandemic respiratory infections. As of January 2020, REMAP-CAP (Randomized Embedded Multifactorial Adaptive Platform for Community-acquired Pneumonia) was approved and enrolling patients in 52 intensive care units in 13 countries on 3 continents. In February, it transitioned into pandemic mode with several design adaptations for coronavirus disease 2019. Lessons learned from the design and conduct of this trial should aid in dissemination of similar platform initiatives in other disease areas.Clinical trial registered with www.clinicaltrials.gov (NCT02735707).


Asunto(s)
Infecciones Comunitarias Adquiridas/terapia , Infecciones por Coronavirus/terapia , Gripe Humana/terapia , Neumonía Viral/terapia , Neumonía/terapia , Antibacterianos/uso terapéutico , Antivirales/uso terapéutico , Betacoronavirus , COVID-19 , Medicina Basada en la Evidencia , Humanos , Pandemias , Sistemas de Atención de Punto , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA