Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 287(21): 17812-17822, 2012 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-22442145

RESUMEN

Thyroid hormone (T(3)) acts in chondrocytes and bone-forming osteoblasts to control bone development and maintenance, but the signaling pathways mediating these effects are poorly understood. Thrb(PV/PV) mice have a severely impaired pituitary-thyroid axis and elevated thyroid hormone levels due to a dominant-negative mutant T(3) receptor (TRß(PV)) that cannot bind T(3) and interferes with the actions of wild-type TR. Thrb(PV/PV) mice have accelerated skeletal development due to unknown mechanisms. We performed microarray studies in primary osteoblasts from wild-type mice and Thrb(PV/PV) mice. Activation of the canonical Wnt signaling in Thrb(PV/PV) mice was confirmed by in situ hybridization analysis of Wnt target gene expression in bone during postnatal growth. By contrast, T(3) treatment inhibited Wnt signaling in osteoblastic cells, suggesting that T(3) inhibits the Wnt pathway by facilitating proteasomal degradation of ß-catenin and preventing its accumulation in the nucleus. Activation of the Wnt pathway in Thrb(PV/PV) mice, however, results from a gain of function for TRß(PV) that stabilizes ß-catenin despite the presence of increased thyroid hormone levels. These studies demonstrate novel interactions between T(3) and Wnt signaling pathways in the regulation of skeletal development and bone formation.


Asunto(s)
Mutación , Osteoblastos/metabolismo , Osteogénesis/fisiología , Hipófisis/metabolismo , Receptores beta de Hormona Tiroidea/metabolismo , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Animales , Ratones , Ratones Mutantes , Osteoblastos/citología , Estabilidad Proteica , Receptores beta de Hormona Tiroidea/genética , Triyodotironina/metabolismo , Triyodotironina/farmacología , beta Catenina/genética
2.
Toxicol Appl Pharmacol ; 272(2): 399-407, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23872097

RESUMEN

Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/µCT imaging. GSK-3 inhibitors caused ß-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH1-34 or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/µCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption.


Asunto(s)
Remodelación Ósea/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Células Madre Mesenquimatosas/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Animales , Biomarcadores/sangre , Densidad Ósea/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Inhibidores Enzimáticos/química , Femenino , Fémur/efectos de los fármacos , Fémur/metabolismo , Fémur/patología , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/enzimología , Estructura Molecular , Osteoblastos/citología , Osteoblastos/enzimología , Ratas , Ratas Sprague-Dawley
3.
Cancers (Basel) ; 15(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37190312

RESUMEN

Introduction: Up to 50% of non-small cell lung cancer (NSCLC) harbor EGFR alterations, the most common etiology behind brain metastases (BMs). First-generation EGFR-directed tyrosine kinase inhibitors (EGFR-TKI) are limited by blood-brain barrier penetration and T790M tumor mutations, wherein third-generation EGFR-TKIs, like Osimertinib, have shown greater activity. However, their efficacy has not been well-studied in later therapy lines in NSCLC patients with BMs (NSCLC-BM). We sought to compare outcomes of NSCLC-BM treated with either first- or third-generation EGFR-TKIs in first-line and 2nd-to-5th-line settings. Methods: A retrospective review of NSCLC-BM patients diagnosed during 2010-2019 at Cleveland Clinic, Ohio, US, a quaternary-care center, was performed and reported following 'strengthening the reporting of observational studies in epidemiology' (STROBE) guidelines. Data regarding socio-demographic, histopathological, molecular characteristics, and clinical outcomes were collected. Primary outcomes were median overall survival (mOS) and progression-free survival (mPFS). Multivariable Cox proportional hazards modeling and propensity score matching were utilized to adjust for confounders. Results: 239 NSCLC-BM patients with EGFR alterations were identified, of which 107 received EGFR-TKIs after diagnosis of BMs. 77.6% (83/107) received it as first-line treatment, and 30.8% (33/107) received it in later (2nd-5th) lines of therapy, with nine patients receiving it in both settings. 64 of 107 patients received first-generation (erlotinib/gefitinib) TKIs, with 53 receiving them in the first line setting and 13 receiving it in the 2nd-5th lines of therapy. 50 patients received Osimertinib as third-generation EGFR-TKI, 30 in first-line, and 20 in the 2nd-5th lines of therapy. Univariable analysis in first-line therapy demonstrated mOS of first- and third-generation EGFR-TKIs as 18.2 and 19.4 months, respectively (p = 0.57), while unadjusted mPFS of first- and third-generation EGFR-TKIs was 9.3 and 13.8 months, respectively (p = 0.14). In 2nd-5th line therapy, for first- and third-generation EGFR-TKIs, mOS was 17.3 and 11.9 months, (p = 0.19), while mPFS was 10.4 and 6.08 months, respectively (p = 0.41). After adjusting for age, performance status, presence of extracranial metastases, whole-brain radiotherapy, and presence of leptomeningeal metastases, hazard ratio (HR) for OS was 1.25 (95% CI 0.63-2.49, p = 0.52) for first-line therapy. Adjusted HR for mOS in 2nd-to-5th line therapy was 1.60 (95% CI 0.55-4.69, p = 0.39). Conclusions: No difference in survival was detected between first- and third-generation EGFR-TKIs in either first or 2nd-to-5th lines of therapy. Larger prospective studies are warranted reporting intracranial lesion size, EGFR alteration and expression levels in primary tumor and brain metastases, and response rates.

4.
Cancers (Basel) ; 15(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37296975

RESUMEN

INTRODUCTION: Traditionally, brain metastases have been treated with stereotactic radiosurgery (SRS), whole-brain radiation (WBRT), and/or surgical resection. Non-small cell lung cancers (NSCLC), over half of which carry EGFR mutations, are the leading cause of brain metastases. EGFR-directed tyrosine kinase inhibitors (TKI) have shown promise in NSCLC; but their utility in NSCLC brain metastases (NSCLCBM) remains unclear. This work sought to investigate whether combining EGFR-TKI with WBRT and/or SRS improves overall survival (OS) in NSCLCBM. METHODS: A retrospective review of NSCLCBM patients diagnosed during 2010-2019 at a tertiary-care US center was performed and reported following the 'strengthening the reporting of observational studies in epidemiology' (STROBE) guidelines. Data regarding socio-demographic and histopathological characteristics, molecular attributes, treatment strategies, and clinical outcomes were collected. Concurrent therapy was defined as the combination of EGFR-TKI and radiotherapy given within 28 days of each other. RESULTS: A total of 239 patients with EGFR mutations were included. Of these, 32 patients had been treated with WBRT only, 51 patients received SRS only, 36 patients received SRS and WBRT only, 18 were given EGFR-TKI and SRS, and 29 were given EGFR-TKI and WBRT. Median OS for the WBRT-only group was 3.23 months, for SRS + WBRT it was 3.17 months, for EGFR-TKI + WBRT 15.50 months, for SRS only 21.73 months, and for EGFR-TKI + SRS 23.63 months. Multivariable analysis demonstrated significantly higher OS in the SRS-only group (HR = 0.38, 95% CI 0.17-0.84, p = 0.017) compared to the WBRT reference group. There were no significant differences in overall survival for the SRS + WBRT combination cohort (HR = 1.30, 95% CI = 0.60, 2.82, p = 0.50), EGFR-TKIs and WBRT combination cohort (HR = 0.93, 95% CI = 0.41, 2.08, p = 0.85), or the EGFR-TKI + SRS cohort (HR = 0.46, 95% CI = 0.20, 1.09, p = 0.07). CONCLUSIONS: NSCLCBM patients treated with SRS had a significantly higher OS compared to patients treated with WBRT-only. While sample-size limitations and investigator-associated selection bias may limit the generalizability of these results, phase II/III clinicals trials are warranted to investigate synergistic efficacy of EGFR-TKI and SRS.

5.
Mol Endocrinol ; 21(5): 1095-107, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17327419

RESUMEN

Thyrotoxicosis is an important but under recognized cause of osteoporosis. Recently, TSH deficiency, rather than thyroid hormone excess, has been suggested as the underlying cause. To investigate the molecular mechanism of osteoporosis in thyroid disease, we characterized the skeleton in mice lacking either thyroid hormone receptor alpha or beta (TRalpha(0/0), TRbeta-/-). Remarkably, in the presence of normal circulating thyroid hormone and TSH concentrations, adult TRalpha(0/0) mice had osteosclerosis accompanied by reduced osteoclastic bone resorption, whereas juveniles had delayed endochondral ossification with reduced bone mineral deposition. By contrast, adult TRbeta-/- mice with elevated TSH and thyroid hormone levels were osteoporotic with evidence of increased bone resorption, whereas juveniles had advanced ossification with increased bone mineral deposition. Analysis of T3 target gene expression revealed skeletal hypothyroidism in TRalpha(0/0) mice, but skeletal thyrotoxicosis in TRbeta-/- mice. These studies demonstrate that bone loss in thyrotoxicosis is independent of circulating TSH levels and mediated predominantly by TRalpha, thus identifying TRalpha as a novel drug target in the prevention and treatment of osteoporosis.


Asunto(s)
Hipertiroidismo/fisiopatología , Osteoporosis/etiología , Hormonas Tiroideas/fisiología , Tirotropina/deficiencia , Envejecimiento , Animales , Animales Recién Nacidos , Densidad Ósea , Resorción Ósea/genética , Huesos/patología , Huesos/ultraestructura , Embrión de Mamíferos , Hipertiroidismo/patología , Ratones , Ratones Noqueados , Microscopía Electrónica de Rastreo , Osteoporosis/genética , Osteoporosis/patología , Receptores alfa de Hormona Tiroidea/deficiencia , Receptores alfa de Hormona Tiroidea/genética , Receptores beta de Hormona Tiroidea/deficiencia , Receptores beta de Hormona Tiroidea/genética , Tirotropina/fisiología
6.
Endocrinology ; 148(12): 5966-76, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17761769

RESUMEN

T(3) is essential for normal skeletal development, acting mainly via the TRalpha1 nuclear receptor. Nevertheless, the mechanisms of T(3) action in bone are poorly defined. Fibroblast growth factor receptor-1 (FGFR1) is also essential for bone formation. Fgfr1 expression and activity are positively regulated by T(3) in osteoblasts, and in mice that harbor a dominant negative PV mutation targeted to TRalpha1 or TRbeta, Fgfr1 expression is sensitive to skeletal thyroid status. To investigate mechanisms underlying T(3) regulation of FGFR1, we obtained primary calvarial osteoblasts from wild-type and TRbeta(PV/PV) littermate mice. T(3) treatment increased Fgfr1 expression 2-fold in wild-type cells, but 8-fold in TRbeta(PV/PV) osteoblasts. The 4-fold increased T(3) sensitivity of TRbeta(PV/PV) osteoblasts was associated with a markedly increased ratio of TRalpha1:TRbeta1 expression that resulted from reduced TRbeta1 expression in TRbeta(PV/PV) osteoblasts compared with wild-type. Bioinformatics and gel shift studies, and mutational analysis, identified a specific TR binding site 279-264 nucleotides upstream of the murine Fgfr1 promoter transcription start site. Transient transfection analysis of a series of Fgfr1 promoter 5'-deletion constructs, of a mutant reporter construct, and a series of heterologous promoter constructs, confirmed that this region of the promoter mediates a TR-dependent transcriptional response to T(3). Thus, in addition to indirect regulation of FGFR1 expression by T(3) reported previously, T(3) also activates the Fgfr1 promoter directly via a thyroid hormone response element located at positions -279/-264.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Elementos de Respuesta/genética , Hormonas Tiroideas/farmacología , Animales , Secuencia de Bases , Células Cultivadas , Ensayo de Cambio de Movilidad Electroforética , Ensayo de Inmunoadsorción Enzimática , Ratones , Datos de Secuencia Molecular , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Unión Proteica , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Receptores alfa de Hormona Tiroidea/genética , Receptores alfa de Hormona Tiroidea/metabolismo , Receptores beta de Hormona Tiroidea/genética , Receptores beta de Hormona Tiroidea/metabolismo
7.
Mol Endocrinol ; 19(12): 3045-59, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16051666

RESUMEN

Thyroid hormone (T(3)) regulates bone turnover and mineralization in adults and is essential for skeletal development. Surprisingly, we identified a phenotype of skeletal thyrotoxicosis in T(3) receptor beta(PV) (TRbeta(PV)) mice in which a targeted frameshift mutation in TRbeta results in resistance to thyroid hormone. To characterize mechanisms underlying thyroid hormone action in bone, we analyzed skeletal development in TRalpha1(PV) mice in which the same PV mutation was targeted to TRalpha1. In contrast to TRbeta(PV) mice, TRalpha1(PV) mutants exhibited skeletal hypothyroidism with delayed endochondral and intramembranous ossification, severe postnatal growth retardation, diminished trabecular bone mineralization, reduced cortical bone deposition, and delayed closure of the skull sutures. Skeletal hypothyroidism in TRalpha1(PV) mutants was accompanied by impaired GH receptor and IGF-I receptor expression and signaling in the growth plate, whereas GH receptor and IGF-I receptor expression and signaling were increased in TRbeta(PV) mice. These data indicate that GH receptor and IGF-I receptor are physiological targets for T(3) action in bone in vivo. The divergent phenotypes observed in TRalpha1(PV) and TRbeta(PV) mice arise because the pituitary gland is a TRbeta-responsive tissue, whereas bone is TRalpha responsive. These studies provide a new understanding of the complex relationship between central and peripheral thyroid status.


Asunto(s)
Desarrollo Óseo/genética , Hipertiroidismo/genética , Hipotiroidismo/genética , Receptores alfa de Hormona Tiroidea/genética , Receptores beta de Hormona Tiroidea/genética , Animales , Densidad Ósea/genética , Huesos/química , Huesos/citología , Mutación del Sistema de Lectura , Hipertiroidismo/metabolismo , Hipotiroidismo/metabolismo , Ratones , Ratones Mutantes , Osteogénesis/genética , Fenotipo , Hipófisis/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptores de Somatotropina/genética , Receptores de Somatotropina/metabolismo , Receptores alfa de Hormona Tiroidea/análisis , Receptores beta de Hormona Tiroidea/análisis , Triyodotironina/metabolismo
8.
J Bone Miner Res ; 20(2): 294-304, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15647824

RESUMEN

UNLABELLED: We investigated the effects of GC-1, a TRbeta-selective thyromimetic, on bone development of hypothyroid rats. Whereas T3 reverted the IGF-I deficiency and the skeletal defects caused by hypothyroidism, GC-1 had no effect on serum IGF-I or on IGF-I protein expression in the epiphyseal growth plate of the femur, but induced selective effects on bone development. Our findings indicate that T3 exerts some essential effects on bone development that are mediated by TRbeta1. INTRODUCTION: We investigated the role of the thyroid hormone receptor beta1 (TRbeta1) on skeletal development of rats using the TRbeta-selective agonist GC-1. MATERIALS AND METHODS: Twenty-one-day-old female rats (n = 6/group) were rendered hypothyroid (Hypo) and treated for 5 weeks with 0.3 ug/100 g BW/day of T3 (1xT3), 5xT3, or equimolar doses of GC-1 (1xGC-1 and 5xGC-1). Serum triiodothyronine (T3), thyroxine (T4), thyroid-stimulating hormone (TSH), and insulin-like growth factor (IGF)-I concentrations were determined by radioimmunoassay (RIA). BMD and longitudinal bone growth were determined by DXA. Trabecular bone histomorphometry and epiphyseal growth plate (EGP) morphometry were performed in the distal femur. Expressions of IGF-I protein and of collagen II and X mRNA were evaluated by immunohistochemistry and in situ hybridization, respectively. To determine hormonal effects on ossification, skeletal preparations of hypothyroid-, 5xGC-1-, and 5xT3-treated neonatal rats were compared. RESULTS: Hypothyroidism impaired longitudinal body growth and BMD gain, delayed ossification, reduced the number of hypertrophic chondrocytes (HCs; 72% versus Euthyroid [Eut] rats; p < 0.001), and resulted in disorganized columns of EGP chondrocytes. Serum IGF-I was 67% reduced versus Eut rats (p < 0.001), and the expression of IGF-I protein and collagen II and X mRNA were undetectable in the EGP of Hypo rats. T3 completely or partially normalized all these parameters. In contrast, GC-1 did not influence serum concentrations or EGP expression of IGF-I, failed to reverse the disorganization of proliferating chondrocyte columns, and barely affected longitudinal growth. Nevertheless, GC-1 induced ossification, HC differentiation, and collagen II and X mRNA expression and increased EGP thickness to Eut values. GC-1-treated rats had higher BMD gain in the total tibia, total femur, and in the femoral diaphysis than Hypo animals (p < 0.05). These changes were associated with increased trabecular volume (48%, p < 0.01), mineralization apposition rate (2.3-fold, p < 0.05), mineralizing surface (4.3-fold, p < 0.01), and bone formation rate (10-fold, p < 0.01). CONCLUSIONS: Treatment of hypothyroid rats with the TRbeta-specific agonist GC-1 partially reverts the skeletal development and maturation defects resultant of hypothyroidism. This finding suggests that TRbeta1 has an important role in bone development.


Asunto(s)
Acetatos/farmacología , Desarrollo Óseo/efectos de los fármacos , Hipotiroidismo/patología , Fenoles/farmacología , Receptores de Hormona Tiroidea/agonistas , Receptores de Hormona Tiroidea/fisiología , Absorciometría de Fotón , Animales , Tamaño Corporal , Densidad Ósea , Huesos/metabolismo , Diferenciación Celular , Condrocitos/metabolismo , Colágeno Tipo II/metabolismo , Colágeno Tipo X/metabolismo , Femenino , Placa de Crecimiento/metabolismo , Humanos , Inmunohistoquímica , Hibridación in Situ , Factor I del Crecimiento Similar a la Insulina/biosíntesis , Factor I del Crecimiento Similar a la Insulina/metabolismo , Osteogénesis , ARN Mensajero/metabolismo , Radioinmunoensayo , Ratas , Ratas Wistar , Receptores beta de Hormona Tiroidea , Factores de Tiempo
9.
Mol Endocrinol ; 17(7): 1410-24, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12677005

RESUMEN

Thyroid hormone (T3) regulates bone turnover and mineralization in adults and is essential for skeletal development during childhood. Hyperthyroidism is an established risk factor for osteoporosis. Nevertheless, T3 actions in bone remain poorly understood. Patients with resistance to thyroid hormone, due to mutations of the T3-receptor beta (TRbeta) gene, display variable phenotypic abnormalities, particularly in the skeleton. To investigate the actions of T3 during bone development, we characterized the skeleton in TRbetaPV mutant mice. TRbetaPV mice harbor a targeted resistance to thyroid hormone mutation in TRbeta and recapitulate the human condition. A severe phenotype, which includes shortened body length, was evident in homozygous TRbetaPV/PV animals. Accelerated growth in utero was associated with advanced endochondral and intramembranous ossification. Advanced bone formation resulted in postnatal growth retardation, premature quiescence of the growth plates, and shortened bone length, together with increased bone mineralization and craniosynostosis. In situ hybridization demonstrated increased expression of fibroblast growth factor receptor-1, a T3-regulated gene in bone, in TRbetaPV/PV perichondrium, growth plate chondrocytes, and osteoblasts. Thus, the skeleton in TRbetaPV/PV mice is thyrotoxic and displays phenotypic features typical of juvenile hyperthyroidism.


Asunto(s)
Desarrollo Óseo/genética , Receptores de Hormona Tiroidea/genética , Síndrome de Resistencia a Hormonas Tiroideas/fisiopatología , Animales , Animales Recién Nacidos , Estatura/genética , Densidad Ósea , Huesos/anomalías , Craneosinostosis/genética , Craneosinostosis/patología , Femenino , Regulación del Desarrollo de la Expresión Génica , Placa de Crecimiento , Hipertiroidismo/genética , Deformidades Congénitas de las Extremidades/genética , Deformidades Congénitas de las Extremidades/patología , Masculino , Ratones , Ratones Mutantes , Proteínas Tirosina Quinasas Receptoras/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Hormona Tiroidea/metabolismo , Receptores beta de Hormona Tiroidea , Síndrome de Resistencia a Hormonas Tiroideas/genética , Tiroxina/sangre
10.
Mol Endocrinol ; 17(9): 1751-66, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12805413

RESUMEN

Thyroid hormone (T3) and the T3 receptor (TR) alpha gene are essential for bone development whereas adult hyperthyroidism increases the risk of osteoporotic fracture. We isolated fibroblast growth factor receptor-1 (FGFR1) as a T3-target gene in osteoblasts by subtraction hybridization. FGFR1 mRNA was induced 2- to 3-fold in osteoblasts treated with T3 for 6-48 h, and FGFR1 protein was stimulated 2- to 4-fold. Induction of FGFR1 was independent of mRNA half-life and abolished by actinomycin D and cycloheximide, indicating the involvement of an intermediary protein. Fibroblast growth factor 2 (FGF2) stimulated MAPK in osteoblasts, and pretreatment with T3 for 6 h induced a more rapid response to FGF that was increased in magnitude by 2- to 3-fold. Similarly, T3 enhanced FGF2-activated autophosphorylation of FGFR1, but did not modify FGF2-induced phosphorylation of the docking protein FRS2. These effects were abolished by the FGFR-selective inhibitors PD166866 and PD161570. In situ hybridization analyses of TRalpha-knockout mice, which have impaired ossification and skeletal mineralization, revealed reduced FGFR1 mRNA expression in osteoblasts and osteocytes, whereas T3 failed to stimulate FGFR1 mRNA or enhance FGF2-activated MAPK signaling in TRalpha-null osteoblasts. These findings implicate FGFR1 signaling in T3-dependent bone development and the pathogenesis of skeletal disorders resulting from thyroid disease.


Asunto(s)
Huesos/metabolismo , Osteoblastos/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Triyodotironina/metabolismo , Urea/análogos & derivados , Animales , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Fosfotransferasas/efectos de los fármacos , Pirimidinas/farmacología , Proteínas Tirosina Quinasas Receptoras/efectos de los fármacos , Proteínas Tirosina Quinasas Receptoras/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Receptores de Factores de Crecimiento de Fibroblastos/efectos de los fármacos , Receptores de Factores de Crecimiento de Fibroblastos/genética , Transducción de Señal/fisiología , Glándula Tiroides/metabolismo , Urea/farmacología
11.
Stem Cell Res ; 12(2): 415-27, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24382458

RESUMEN

Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) can differentiate into multiple lineages including osteogenic and adipogenic cells. Wnt signalling has been implicated in controlling BMSC fate, but the mechanisms are unclear and apparently conflicting data exist. Here we show that a novel glycogen synthase kinase 3ß inhibitor, AR28, is a potent activator of canonical Wnt signalling using in vitro ß-catenin translocation studies and TCF-reporter assays. In vivo, AR28 induced characteristic axis duplication and secondary regions of chordin expression in Xenopus laevis embryos. Using human BMSCs grown in adipogenic medium, we confirmed that AR28-mediated Wnt signalling caused a significant (p<0.05) dose-dependent reduction of adipogenic markers. In osteogenic media, including dexamethasone, AR28 caused significant (p<0.05) decreases in alkaline phosphatase (ALP) activity compared to vehicle controls, indicative of a reduced osteogenic response. However, when excluding dexamethasone from the osteogenic media, increases in both ALP and mineralisation were identified following AR28 treatment, which was blocked by mitomycin C. Pre-treatment of BMSCs with AR28 for 7 days before osteogenic induction also increased ALP activity and mineralisation. Furthermore, BMP2-induced osteogenic differentiation was strongly enhanced by AR28 addition within 3 days, but without concomitant changes in cell number, therefore revealing BMP-dependent and independent mechanisms for Wnt-induced osteogenesis.


Asunto(s)
Células de la Médula Ósea/citología , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Células Madre Mesenquimatosas/citología , Proteínas Wnt/metabolismo , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/enzimología , Células de la Médula Ósea/metabolismo , Proteína Morfogenética Ósea 2/farmacología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Línea Celular , Dexametasona/farmacología , Sinergismo Farmacológico , Glucógeno Sintasa Quinasa 3 beta , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/enzimología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C3H , Osteogénesis/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , Xenopus laevis
12.
J Bone Miner Res ; 26(4): 811-21, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20939016

RESUMEN

Small molecules are attractive therapeutics to amplify and direct differentiation of stem cells. They also can be used to understand the regulation of their fate by interfering with specific signaling pathways. Mesenchymal stem cells (MSCs) have the potential to proliferate and differentiate into several cell types, including osteoblasts. Activation of canonical Wnt signaling by inhibition of glycogen synthase kinase 3 (GSK-3) has been shown to enhance bone mass, possibly by involving a number of mechanisms ranging from amplification of the mesenchymal stem cell pool to the commitment and differentiation of osteoblasts. Here we have used a highly specific novel inhibitor of GSK-3, AR28, capable of inducing ß-catenin nuclear translocation and enhanced bone mass after 14 days of treatment in BALB/c mice. We have shown a temporally regulated increase in the number of colony-forming units-osteoblast (CFU-O) and -adipocyte (CFU-A) but not colony-forming units-fibroblast (CFU-F) in mice treated for 3 days. However, the number of CFU-O and CFU-A returned to normal levels after 14 days of treatment, and the number of CFU-F was decreased significantly. In contrast, the number of osteoblasts increased significantly only after 14 days of treatment, and this was seen together with a significant decrease in bone marrow adiposity. These data suggest that the increased bone mass is the result of an early temporal wave of amplification of a subpopulation of MSCs with both osteogenic and adipogenic potential, which is driven to osteoblast differentiation at the expense of adipogenesis.


Asunto(s)
Adipocitos/citología , Diferenciación Celular/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Inhibidores de Proteínas Quinasas/farmacología , Fosfatasa Ácida/metabolismo , Adipocitos/metabolismo , Fosfatasa Alcalina/metabolismo , Animales , Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Calcificación Fisiológica/efectos de los fármacos , Recuento de Células , Diferenciación Celular/fisiología , Línea Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Ensayo de Unidades Formadoras de Colonias , Fibroblastos/citología , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Glucógeno Sintasa Quinasa 3 beta , Isoenzimas/metabolismo , Lipoproteína Lipasa/genética , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones , Osteoblastos/metabolismo , Osteocalcina/genética , Osteoclastos/citología , Osteoclastos/metabolismo , Osteogénesis/efectos de los fármacos , PPAR gamma/genética , Inhibidores de Proteínas Quinasas/administración & dosificación , Radiografía , Fosfatasa Ácida Tartratorresistente , Tibia/anatomía & histología , Tibia/citología , Tibia/diagnóstico por imagen , Tibia/efectos de los fármacos , beta Catenina/metabolismo
13.
Curr Opin Endocrinol Diabetes Obes ; 14(5): 410-5, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17940472

RESUMEN

PURPOSE OF REVIEW: Thyroid hormone and fibroblast growth factors are critically important for normal development. Recent evidence points to complex interactions between thyroid hormone and fibroblast growth factors that regulate cell proliferation and differentiation. We discuss mechanisms of thyroid hormone and fibroblast growth factor action, and identify downstream signalling responses that offer opportunities for regulatory crosstalk. RECENT FINDINGS: Thyroid hormone action is mediated by nuclear receptors that regulate gene expression in response to thyroid hormone. Recent studies have shown thyroid hormone also acts at the cell membrane via the alpha(V)beta(3) integrin receptor and these actions also communicate with nuclear responses to thyroid hormone. Fibroblast growth factors act via receptor tyrosine kinases to stimulate second messenger pathways that also communicate with nuclear events. Several common pathways, including mitogen-activated protein kinase, phosphatidylinositol 3-kinase, and signal transducer and activator of transcription signalling, are activated by thyroid hormone and fibroblast growth factor, and may act as points of convergence for interaction in tissues, such as bone, central nervous system and heart, as well as in the extra-cellular matrix and during angiogenesis. SUMMARY: Although there is convincing evidence that thyroid hormone and fibroblast growth factors interact widely, little is known about molecular mechanisms that determine this interplay. Future research in this expanding field may result in identification of new pharmacological targets for manipulation of cell proliferation and differentiation.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Receptores de Hormona Tiroidea/genética , Receptores de Hormona Tiroidea/metabolismo , Transducción de Señal , Hormonas Tiroideas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Activación Enzimática , Regulación de la Expresión Génica , Humanos , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/genética , Factores de Transcripción/metabolismo
14.
Nucl Recept Signal ; 4: e011, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16862217

RESUMEN

Bone development is extremely sensitive to alterations in thyroid status. Recently, we analyzed the skeletal phenotypes of mice with the dominant negative resistance to thyroid hormone (RTH) mutation PV targeted to either the thyroid hormone receptor (TR) alpha1 or beta gene. This perspective summarizes our findings to date and explores the wider implications for thyroid status and T3 target gene expression in individual tissues.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA