Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 382(2273): 20230201, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38736335

RESUMEN

The Cassini mission provided evidence for a global subsurface ocean and ongoing hydrothermal activity on Enceladus, based on results from Cassini's mass spectrometers. Laboratory simulations of hydrothermal conditions on icy moons are needed to further constrain the composition of ejected ice grains containing hydrothermally altered organic material. Here, we present results from our newly established facility to simulate the processing of ocean material within the temperature range 80-150°C and the pressure range 80-130 bar, representing conditions suggested for the water-rock interface on Enceladus. With this new facility, we investigate the hydrothermal processing of triglycine (GGG) peptide and, for the first time, analyse the extracted samples using laser-induced liquid beam ion desorption (LILBID) mass spectrometry, a laboratory analogue for impact ionization mass spectrometry of ice grains in space. We outline an approach to elucidate hydrothermally processed GGG in ice grains ejected from icy moons based on characteristic differences between GGG anion and cation mass spectra. These differences are linked to hydrothermal processing and thus provide a fingerprint of hydrothermal activity on extraterrestrial bodies. These results will serve as important guidelines for biosignatures potentially obtained by a future Enceladus mission and the SUrface Dust Analyzer (SUDA) instrument onboard Europa Clipper. This article is part of the theme issue 'Dust in the Solar System and beyond'.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA