Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pharmacol ; 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35680165

RESUMEN

Loss of prosecretory Cl- channel CFTR activity is considered as the key cause of gastrointestinal disorders in cystic fibrosis including constipation and meconium ileus. Clc-2 is proposed as an alternative Cl- channel in intestinal epithelia that can compensate for CFTR loss-of-function. Lubiprostone is an FDA-approved drug with Clc-2 activation as its presumed mechanism of action. However, relative contribution of Clc-2 in intestinal Cl- secretion and the mechanism of action of lubiprostone remain controversial due to lack of selective Clc-2 inhibitors. Using recently identified selective Clc-2 inhibitor AK-42, we characterized the roles of Clc-2 in Cl- secretion in human intestinal epithelial T84 cells. Clc-2 inhibitor AK-42 had minimal (15%) inhibitory effect on secretory short-circuit current (Isc) induced by cAMP agonists, where subsequently applied CFTR inhibitor (CFTRinh-172) caused 2-3 fold greater inhibition. Similarly, AK-42 inhibited lubiprostone-induced secretory Isc by 20%, whereas CFTRinh-172 caused 2-3 fold greater inhibition. In addition to increasing CFTR and Clc-2-mediated apical Cl- conductance, lubiprostone increased basolateral membrane K+ conductance, which was completely reversed by cAMP-activated K+ channel inhibitor BaCl2 All components of lubiprostone-induced secretion (Clc-2, CFTR and K+ channels) were inhibited by ~65% with the extracellular Ca2+-sensing receptor (CaSR) activator cinacalcet that stimulates cAMP hydrolysis. Lastly, EP4 prostaglandin receptor inhibitor GW627368 pretreatment inhibited lubiprostone-induced secretion by 40% without any effect on forskolin response. Our findings suggest that Clc-2 has minor role in cAMP-induced intestinal Cl- secretion; and lubiprostone is not a selective Clc-2 activator, but general activator of cAMP-gated ion channels in human intestinal epithelial cells. Significance Statement Cl- channel Clc-2 activation is the proposed mechanism of action of the FDA-approved constipation drug lubiprostone. Using first-in-class selective Clc-2 inhibitor AK-42, we showed that Clc-2 has minor contribution in intestinal Cl- secretion induced by lubiprostone and cAMP agonists. We also found that lubiprostone is a general activator of cAMP-gated ion channels in human intestinal epithelial cells (via EP4 receptors). Our findings clarify the roles of Clc-2 in intestinal Cl- secretion and elucidate the mechanism of action of approved-drug lubiprostone.

2.
Transl Res ; 263: 45-52, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37678755

RESUMEN

Cyclic nucleotide elevation in intestinal epithelial cells is the key pathology causing intestinal fluid loss in secretory diarrheas such as cholera. Current secretory diarrhea treatment is primarily supportive, and oral rehydration solution is the mainstay of cholera treatment. There is an unmet need for safe, simple and effective diarrhea treatments. By promoting cAMP hydrolysis, extracellular calcium-sensing receptor (CaSR) is a regulator of intestinal fluid transport. We studied the antidiarrheal mechanisms of FDA-approved CaSR activator cinacalcet and tested its efficacy in clinically relevant human cell, mouse and intestinal organoid models of secretory diarrhea. By using selective inhibitors, we found that cAMP agonists-induced secretory short-circuit currents (Isc) in human intestinal T84 cells are mediated by collective actions of apical membrane cystic fibrosis transmembrane conductance regulator (CFTR) and Clc-2 Cl- channels, and basolateral membrane K+ channels. 30 µM cinacalcet pretreatment inhibited all 3 components of forskolin and cholera toxin-induced secretory Isc by ∼75%. In mouse jejunal mucosa, cinacalcet inhibited forskolin-induced secretory Isc by ∼60% in wild type mice, with no antisecretory effect in intestinal epithelia-specific Casr knockout mice (Casr-flox; Vil1-cre). In suckling mouse model of cholera induced by oral cholera toxin, single dose (30 mg/kg) oral cinacalcet treatment reduced intestinal fluid accumulation by ∼55% at 20 hours. Lastly, cinacalcet inhibited forskolin-induced secretory Isc by ∼75% in human colonic and ileal organoids. Our findings suggest that CaSR activator cinacalcet has antidiarrheal efficacy in distinct human cell, organoid and mouse models of secretory diarrhea. Considering its excellent clinical safety profile, cinacalcet can be repurposed as a treatment for cyclic nucleotide-mediated secretory diarrheas including cholera.


Asunto(s)
Antidiarreicos , Cólera , Ratones , Humanos , Animales , Antidiarreicos/metabolismo , Antidiarreicos/farmacología , Antidiarreicos/uso terapéutico , Cólera/tratamiento farmacológico , Cólera/metabolismo , Cólera/patología , Toxina del Cólera/metabolismo , Toxina del Cólera/farmacología , Toxina del Cólera/uso terapéutico , Cinacalcet/farmacología , Cinacalcet/uso terapéutico , Cinacalcet/metabolismo , Receptores Sensibles al Calcio/metabolismo , Receptores Sensibles al Calcio/uso terapéutico , Nucleótidos Cíclicos/metabolismo , Nucleótidos Cíclicos/farmacología , Nucleótidos Cíclicos/uso terapéutico , Colforsina/metabolismo , Colforsina/farmacología , Colforsina/uso terapéutico , Diarrea/tratamiento farmacológico , Diarrea/metabolismo , Mucosa Intestinal/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/uso terapéutico , Ratones Noqueados
3.
JCI Insight ; 6(4)2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33400691

RESUMEN

Diarrhea is a major cause of global mortality, and outbreaks of secretory diarrhea such as cholera remain an important problem in the developing world. Current treatment of secretory diarrhea primarily involves supportive measures, such as fluid replacement. The calcium-sensing receptor (CaSR) regulates multiple biological activities in response to changes in extracellular Ca2+. The FDA-approved drug cinacalcet is an allosteric activator of CaSR used for treatment of hyperparathyroidism. Here, we found by short-circuit current measurements in human colonic T84 cells that CaSR activation by cinacalcet reduced forskolin-induced Cl- secretion by greater than 80%. Cinacalcet also reduced Cl- secretion induced by cholera toxin, heat-stable E. coli enterotoxin, and vasoactive intestinal peptide (VIP). The cinacalcet effect primarily involved indirect inhibition of cystic fibrosis transmembrane conductance regulator-mediated (CFTR-mediated) Cl- secretion following activation of CaSR and downstream phospholipase C and phosphodiesterases. In mice, cinacalcet reduced fluid accumulation by more than 60% in intestinal closed loop models of cholera and traveler's diarrhea. The cinacalcet effect involved both inhibition of CFTR-mediated secretion and stimulation of sodium-hydrogen exchanger 3-mediated absorption. These findings support the therapeutic utility of the safe and commonly used drug cinacalcet in CFTR-dependent secretory diarrheas, including cholera, traveler's diarrhea, and VIPoma.


Asunto(s)
Cinacalcet/uso terapéutico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/efectos adversos , Diarrea/tratamiento farmacológico , Reposicionamiento de Medicamentos/métodos , Receptores Sensibles al Calcio/uso terapéutico , Animales , Toxinas Bacterianas , Línea Celular , Toxina del Cólera , Cinacalcet/metabolismo , Colon/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Diarrea/metabolismo , Enterotoxinas , Escherichia coli , Proteínas de Escherichia coli , Femenino , Humanos , Hiperparatiroidismo/tratamiento farmacológico , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA