Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Nat Prod ; 86(2): 246-255, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36745695

RESUMEN

Microbial secondary metabolites continue to provide a valuable source of both chemical matter and inspiration for drug discovery in a broad range of therapeutic areas. Beyond this, the corresponding microorganisms represent a sustainable modality for biotechnological production of structurally complex molecules at the quantities required for drug development or even commercial manufacturing. Chromobacterium vaccinii, which has recently been reported as a producer of the pharmacologically highly important Gq inhibitor FR900359 (FR), represents such an example. The characterization of an orphan biosynthetic gene cluster (BGC) located directly downstream of the frs BCG led to the discovery of eight new lipopeptides, valhidepsins A-H (1-8), produced by C. vaccinii. Their chemical structures were elucidated through analysis of 1D and 2D NMR data and high-resolution MS/MS fragmentation methods. The valhidepsins did not display significant antibiotic nor cytotoxic activities but showed surfactant properties. The cluster-compound correlation was demonstrated by generation of a knockout mutant, which abolished production of valhidepsins. This knockout mutant yielded a significantly increased isolated yield of FR.


Asunto(s)
Depsipéptidos , Lipopéptidos , Lipopéptidos/química , Espectrometría de Masas en Tándem , Depsipéptidos/química , Familia de Multigenes
2.
Chimia (Aarau) ; 75(7): 620-633, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34523403

RESUMEN

Natural Products (NPs) are molecular' special equipment ' that impart survival benefits on their producers in nature. Due to their evolved functions to modulate biology these privileged metabolites are substantially represented in the drug market and are continuing to contribute to the discovery of innovative medicines such as the recently approved semi-synthetic derivative of the bacterial alkaloid staurosporin in oncology indications. The innovation of low molecular weight compounds in modern drug discovery is built on rapid progress in chemical, molecular biological, pharmacological and data sciences, which together provide a rich understanding of disease-driving molecular interactions and how to modulate them. NPs investigated in these pharmaceutical research areas create new perspectives on their chemical and biological features and thereby new chances to advance medical research. New methods in analytical chemistry linked with searchable NP-databases solved the issue of reisolation and enabled targeted and efficient access to novel molecules from nature. Cheminformatics delivers high resolution descriptions of NPs and explores the substructures that systematically map NP-chemical space by sp³-enriched fragments. Whole genome sequencing has revealed the existence of collocated gene clusters that form larger functional entities together with proximate resistance factors thus avoiding self-inhibition of the encoded metabolites. The analysis of bacterial and fungal genes provides tantalizing glimpses of new compound-target pairs of therapeutic value. Furthermore, a dedicated investigation of structurally unique, selectively active NPs in chemical biology demonstrates their extraordinary power as shuttles between new biological target spaces of pharmaceutical relevance.


Asunto(s)
Productos Biológicos , Bases de Datos Factuales , Descubrimiento de Drogas , Industria Farmacéutica
3.
Am J Hum Genet ; 100(5): 737-750, 2017 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-28457472

RESUMEN

Keratolytic winter erythema (KWE) is a rare autosomal-dominant skin disorder characterized by recurrent episodes of palmoplantar erythema and epidermal peeling. KWE was previously mapped to 8p23.1-p22 (KWE critical region) in South African families. Using targeted resequencing of the KWE critical region in five South African families and SNP array and whole-genome sequencing in two Norwegian families, we identified two overlapping tandem duplications of 7.67 kb (South Africans) and 15.93 kb (Norwegians). The duplications segregated with the disease and were located upstream of CTSB, a gene encoding cathepsin B, a cysteine protease involved in keratinocyte homeostasis. Included in the 2.62 kb overlapping region of these duplications is an enhancer element that is active in epidermal keratinocytes. The activity of this enhancer correlated with CTSB expression in normal differentiating keratinocytes and other cell lines, but not with FDFT1 or NEIL2 expression. Gene expression (qPCR) analysis and immunohistochemistry of the palmar epidermis demonstrated significantly increased expression of CTSB, as well as stronger staining of cathepsin B in the stratum granulosum of affected individuals than in that of control individuals. Analysis of higher-order chromatin structure data and RNA polymerase II ChIA-PET data from MCF-7 cells did not suggest remote effects of the enhancer. In conclusion, KWE in South African and Norwegian families is caused by tandem duplications in a non-coding genomic region containing an active enhancer element for CTSB, resulting in upregulation of this gene in affected individuals.


Asunto(s)
Catepsina B/metabolismo , Elementos de Facilitación Genéticos , Eritema/genética , Duplicación de Gen , Regulación de la Expresión Génica , Queratosis/genética , Enfermedades Cutáneas Genéticas/genética , Estudios de Casos y Controles , Catepsina B/genética , Mapeo Cromosómico , Cromosomas Humanos Par 8/genética , Variaciones en el Número de Copia de ADN , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Epidermis/metabolismo , Epigenómica , Eritema/epidemiología , Femenino , Marcadores Genéticos , Humanos , Queratinocitos/metabolismo , Queratosis/epidemiología , Células MCF-7 , Masculino , Noruega/epidemiología , Linaje , Enfermedades Cutáneas Genéticas/epidemiología , Sudáfrica/epidemiología
4.
Am J Hum Genet ; 100(2): 323-333, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28089251

RESUMEN

Nephronophthisis (NPH), an autosomal-recessive tubulointerstitial nephritis, is the most common cause of hereditary end-stage renal disease in the first three decades of life. Since most NPH gene products (NPHP) function at the primary cilium, NPH is classified as a ciliopathy. We identified mutations in a candidate gene in eight individuals from five families presenting late-onset NPH with massive renal fibrosis. This gene encodes MAPKBP1, a poorly characterized scaffolding protein for JNK signaling. Immunofluorescence analyses showed that MAPKBP1 is not present at the primary cilium and that fibroblasts from affected individuals did not display ciliogenesis defects, indicating that MAPKBP1 may represent a new family of NPHP not involved in cilia-associated functions. Instead, MAPKBP1 is recruited to mitotic spindle poles (MSPs) during the early phases of mitosis where it colocalizes with its paralog WDR62, which plays a key role at MSP. Detected mutations compromise recruitment of MAPKBP1 to the MSP and/or its interaction with JNK2 or WDR62. Additionally, we show increased DNA damage response signaling in fibroblasts from affected individuals and upon knockdown of Mapkbp1 in murine cell lines, a phenotype previously associated with NPH. In conclusion, we identified mutations in MAPKBP1 as a genetic cause of juvenile or late-onset and cilia-independent NPH.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Enfermedades Renales Quísticas/congénito , Adolescente , Alelos , Animales , Proteínas de Ciclo Celular , Niño , Cilios/genética , Daño del ADN/genética , Modelos Animales de Enfermedad , Fibroblastos/citología , Fibroblastos/metabolismo , Fibrosis , Regulación de la Expresión Génica , Humanos , Riñón/citología , Riñón/metabolismo , Enfermedades Renales Quísticas/diagnóstico , Enfermedades Renales Quísticas/genética , Fallo Renal Crónico/diagnóstico , Fallo Renal Crónico/genética , Ratones , Ratones Noqueados , Mitosis , Mutación , Células 3T3 NIH , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Linaje , Fenotipo , Transducción de Señal , Polos del Huso/metabolismo , Adulto Joven , Pez Cebra
5.
Biotechnol Bioeng ; 115(10): 2530-2540, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29777593

RESUMEN

An increasing number of nonantibody format proteins are entering clinical development. However, one of the major hurdles for the production of nonantibody glycoproteins is host cell-related proteolytic degradation, which can drastically impact developability and timelines of pipeline projects. Chinese hamster ovary (CHO) cells are the preferred production host for recombinant therapeutic proteins. Using protease inhibitors, transcriptomics, and genetic knockdowns, we have identified, out of the >700 known proteases in rodents, matriptase-1 as the major protease involved in the degradation of recombinant proteins expressed in CHO-K1 cells. Subsequently, matriptase-1 was deleted in CHO-K1 cells using "transcription activator-like effector nucleases" (TALENs) as well as zinc-finger nucleases (ZFNs). This resulted in a superior CHO-K1 matriptase (KO) cell line with strongly reduced or no proteolytic degradation activity toward a panel of recombinantly expressed proteins. The matriptase KO cell line was evaluated in spike-in experiments and showed little or no degradation of proteins incubated in culture supernatant derived from the KO cells. This effect was confirmed when the same proteins were recombinantly expressed in the KO cell line. In summary, the combination of novel cell line engineering tools, next-generation sequencing screening methods, and the recently published Chinese hamster genome has enabled the development of this novel matriptase KO CHO cell line capable of improving expression yields of intact therapeutic proteins.


Asunto(s)
Ingeniería Celular/métodos , Técnicas de Silenciamiento del Gen/métodos , Proteolisis , Serina Endopeptidasas/genética , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Serina Endopeptidasas/metabolismo
6.
Proc Natl Acad Sci U S A ; 112(21): 6754-9, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25947154

RESUMEN

Root systems consist of different root types (RTs) with distinct developmental and functional characteristics. RTs may be individually reprogrammed in response to their microenvironment to maximize adaptive plasticity. Molecular understanding of such specific remodeling--although crucial for crop improvement--is limited. Here, RT-specific transcriptomes of adult rice crown, large and fine lateral roots were assessed, revealing molecular evidence for functional diversity among individual RTs. Of the three rice RTs, crown roots displayed a significant enrichment of transcripts associated with phytohormones and secondary cell wall (SCW) metabolism, whereas lateral RTs showed a greater accumulation of transcripts related to mineral transport. In nature, arbuscular mycorrhizal (AM) symbiosis represents the default state of most root systems and is known to modify root system architecture. Rice RTs become heterogeneously colonized by AM fungi, with large laterals preferentially entering into the association. However, RT-specific transcriptional responses to AM symbiosis were quantitatively most pronounced for crown roots despite their modest physical engagement in the interaction. Furthermore, colonized crown roots adopted an expression profile more related to mycorrhizal large lateral than to noncolonized crown roots, suggesting a fundamental reprogramming of crown root character. Among these changes, a significant reduction in SCW transcripts was observed that was correlated with an alteration of SCW composition as determined by mass spectrometry. The combined change in SCW, hormone- and transport-related transcript profiles across the RTs indicates a previously overlooked switch of functional relationships among RTs during AM symbiosis, with a potential impact on root system architecture and functioning.


Asunto(s)
Glomeromycota/fisiología , Micorrizas/fisiología , Oryza/genética , Oryza/microbiología , Transcriptoma , Pared Celular/genética , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Hidroxibenzoatos/metabolismo , Minerales/metabolismo , Oryza/fisiología , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Supresión Genética , Simbiosis/genética , Simbiosis/fisiología
7.
J Cell Sci ; 128(6): 1217-29, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25616894

RESUMEN

A new cyclic decadepsipeptide was isolated from Chaetosphaeria tulasneorum with potent bioactivity on mammalian and yeast cells. Chemogenomic profiling in S. cerevisiae indicated that the Sec61 translocon complex, the machinery for protein translocation and membrane insertion at the endoplasmic reticulum, is the target. The profiles were similar to those of cyclic heptadepsipeptides of a distinct chemotype (including HUN-7293 and cotransin) that had previously been shown to inhibit cotranslational translocation at the mammalian Sec61 translocon. Unbiased, genome-wide mutagenesis followed by full-genome sequencing in both fungal and mammalian cells identified dominant mutations in Sec61p (yeast) or Sec61α1 (mammals) that conferred resistance. Most, but not all, of these mutations affected inhibition by both chemotypes, despite an absence of structural similarity. Biochemical analysis confirmed inhibition of protein translocation into the endoplasmic reticulum of both co- and post-translationally translocated substrates by both chemotypes, demonstrating a mechanism independent of a translating ribosome. Most interestingly, both chemotypes were found to also inhibit SecYEG, the bacterial Sec61 translocon homolog. We suggest 'decatransin' as the name for this new decadepsipeptide translocation inhibitor.


Asunto(s)
Productos Biológicos/farmacología , Retículo Endoplásmico/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Ascomicetos/metabolismo , Células COS , Células Cultivadas , Chlorocebus aethiops , Células HCT116 , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Péptidos Cíclicos/farmacología , Polimorfismo de Nucleótido Simple/genética , Canales de Translocación SEC , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo
8.
Nature ; 480(7378): 490-5, 2011 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-22170606

RESUMEN

Methylation of cytosines is an essential epigenetic modification in mammalian genomes, yet the rules that govern methylation patterns remain largely elusive. To gain insights into this process, we generated base-pair-resolution mouse methylomes in stem cells and neuronal progenitors. Advanced quantitative analysis identified low-methylated regions (LMRs) with an average methylation of 30%. These represent CpG-poor distal regulatory regions as evidenced by location, DNase I hypersensitivity, presence of enhancer chromatin marks and enhancer activity in reporter assays. LMRs are occupied by DNA-binding factors and their binding is necessary and sufficient to create LMRs. A comparison of neuronal and stem-cell methylomes confirms this dependency, as cell-type-specific LMRs are occupied by cell-type-specific transcription factors. This study provides methylome references for the mouse and shows that DNA-binding factors locally influence DNA methylation, enabling the identification of active regulatory regions.


Asunto(s)
Citosina/metabolismo , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Epigenómica , Animales , Diferenciación Celular , Islas de CpG , Células Madre Embrionarias/citología , Ratones , Neuronas/citología , Regiones Promotoras Genéticas/genética , Unión Proteica , Células Madre/citología , Factores de Transcripción/metabolismo
9.
Genes Dev ; 23(5): 589-601, 2009 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19270159

RESUMEN

Duplication of eukaryotic genomes during S phase is coordinated in space and time. In order to identify zones of initiation and cell-type- as well as gender-specific plasticity of DNA replication, we profiled replication timing, histone acetylation, and transcription throughout the Drosophila genome. We observed two waves of replication initiation with many distinct zones firing in early-S phase and multiple, less defined peaks at the end of S phase, suggesting that initiation becomes more promiscuous in late-S phase. A comparison of different cell types revealed widespread plasticity of replication timing on autosomes. Most occur in large regions, but only half coincide with local differences in transcription. In contrast to confined autosomal differences, a global shift in replication timing occurs throughout the single male X chromosome. Unlike in females, the dosage-compensated X chromosome replicates almost exclusively early. This difference occurs at sites that are not transcriptionally hyperactivated, but show increased acetylation of Lys 16 of histone H4 (H4K16ac). This suggests a transcription-independent, yet chromosome-wide process related to chromatin. Importantly, H4K16ac is also enriched at initiation zones as well as early replicating regions on autosomes during S phase. Together, our study reveals novel organizational principles of DNA replication of the Drosophila genome and suggests that H4K16ac is more closely correlated with replication timing than is transcription.


Asunto(s)
Cromatina/genética , Momento de Replicación del ADN/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genoma de los Insectos/genética , Acetilación , Animales , Fenómenos Fisiológicos Celulares , Cromosomas/genética , Cromosomas/metabolismo , Proteínas de Drosophila/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Fase S/genética , Factores Sexuales , Cromosoma X/genética
10.
Metab Brain Dis ; 31(1): 135-56, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26400817

RESUMEN

D-cycloserine (DCS) has been shown to be effective in facilitating fear extinction in animal and human studies, however the precise mechanisms whereby the co-administration of DCS and behavioural fear extinction reduce fear are still unclear. This study investigated the molecular mechanisms of intrahippocampally administered D-cycloserine in facilitating fear extinction in a contextual fear conditioning animal model. Male Sprague Dawley rats (n = 120) were grouped into four experimental groups (n = 30) based on fear conditioning and intrahippocampal administration of either DCS or saline. The light/dark avoidance test was used to differentiate maladapted (MA) (anxious) from well-adapted (WA) (not anxious) subgroups. RNA extracted from the left dorsal hippocampus was used for RNA sequencing and gene expression data was compared between six fear-conditioned + saline MA (FEAR + SALINE MA) and six fear-conditioned + DCS WA (FEAR + DCS WA) animals. Of the 424 significantly downregulated and 25 significantly upregulated genes identified in the FEAR + DCS WA group compared to the FEAR + SALINE MA group, 121 downregulated and nine upregulated genes were predicted to be relevant to fear conditioning and anxiety and stress-related disorders. The majority of downregulated genes transcribed immune, proinflammatory and oxidative stress systems molecules. These molecules mediate neuroinflammation and cause neuronal damage. DCS also regulated genes involved in learning and memory processes, and genes associated with anxiety, stress-related disorders and co-occurring diseases (e.g., cardiovascular diseases, digestive system diseases and nervous system diseases). Identifying the molecular underpinnings of DCS-mediated fear extinction brings us closer to understanding the process of fear extinction.


Asunto(s)
Cicloserina/farmacología , Extinción Psicológica/efectos de los fármacos , Miedo/efectos de los fármacos , ARN/genética , Adaptación Psicológica/efectos de los fármacos , Animales , Regulación hacia Abajo/genética , Expresión Génica/efectos de los fármacos , Hipocampo , Masculino , Microinyecciones , Ratas , Ratas Sprague-Dawley , Análisis de Secuencia de ARN
11.
Chimia (Aarau) ; 70(12): 883-888, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-28661362

RESUMEN

This review describes the innovative technological developments that have brought genomics from its beginnings in the late 1980s to the present day and then discusses the ways in which genomics platforms are deployed across Switzerland to play a key role in supporting basic and applied research in both academia and industry.


Asunto(s)
Genómica , Análisis de Secuencia por Matrices de Oligonucleótidos , Humanos , Análisis de Secuencia de ADN , Suiza
13.
J Biol Chem ; 288(38): 27434-27443, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-23940034

RESUMEN

TLQP-21, a peptide derived from VGF (non-acronymic) by proteolytic processing, has been shown to modulate energy metabolism, differentiation, and cellular response to stress. Although extensively investigated, the receptor for this endogenous peptide has not previously been described. This study describes the use of a series of studies that show G protein-coupled receptor-mediated biological activity of TLQP-21 signaling in CHO-K1 cells. Unbiased genome-wide sequencing of the transcriptome from responsive CHO-K1 cells identified a prioritized list of possible G protein-coupled receptors bringing about this activity. Further experiments using a series of defined receptor antagonists and siRNAs led to the identification of complement C3a receptor-1 (C3AR1) as a target for TLQP-21 in rodents. We have not been able to demonstrate so far that this finding is translatable to the human receptor. Our results are in line with a large number of physiological observations in rodent models of food intake and metabolic control, where TLQP-21 shows activity. In addition, the sensitivity of TLQP-21 signaling to pertussis toxin is consistent with the known signaling pathway of C3AR1. The binding of TLQP-21 to C3AR1 not only has effects on signaling but also modulates cellular functions, as TLQP-21 was shown to have a role in directing migration of mouse RAW264.7 cells.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Receptores de Complemento/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Secuencia de Bases , Células CHO , Cricetinae , Cricetulus , Estudio de Asociación del Genoma Completo , Células HEK293 , Humanos , Ratones , Datos de Secuencia Molecular , Factores de Crecimiento Nervioso/farmacología , Neuropéptidos/farmacología , Toxina del Pertussis/farmacología , Ratas , Receptores de Complemento/agonistas , Receptores de Complemento/genética , Especificidad de la Especie , Transcriptoma/efectos de los fármacos
14.
J Am Soc Nephrol ; 24(8): 1216-22, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23687361

RESUMEN

LMX1B encodes a homeodomain-containing transcription factor that is essential during development. Mutations in LMX1B cause nail-patella syndrome, characterized by dysplasia of the patellae, nails, and elbows and FSGS with specific ultrastructural lesions of the glomerular basement membrane (GBM). By linkage analysis and exome sequencing, we unexpectedly identified an LMX1B mutation segregating with disease in a pedigree of five patients with autosomal dominant FSGS but without either extrarenal features or ultrastructural abnormalities of the GBM suggestive of nail-patella-like renal disease. Subsequently, we screened 73 additional unrelated families with FSGS and found mutations involving the same amino acid (R246) in 2 families. An LMX1B in silico homology model suggested that the mutated residue plays an important role in strengthening the interaction between the LMX1B homeodomain and DNA; both identified mutations would be expected to diminish such interactions. In summary, these results suggest that isolated FSGS could result from mutations in genes that are also involved in syndromic forms of FSGS. This highlights the need to include these genes in all diagnostic approaches to FSGS that involve next-generation sequencing.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria/genética , Proteínas con Homeodominio LIM/genética , Síndrome de la Uña-Rótula/genética , Factores de Transcripción/genética , Adolescente , Adulto , Niño , Femenino , Genes Dominantes , Humanos , Masculino , Persona de Mediana Edad , Mutación , Linaje , Análisis de Secuencia de ADN , Adulto Joven
15.
Nat Genet ; 37(12): 1361-6, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16258543

RESUMEN

Drosophila melanogaster heterochromatin protein 1 (HP1a or HP1) is believed to be involved in active transcription, transcriptional gene silencing and the formation of heterochromatin. But little is known about the function of HP1 during development. Using a Gal4-induced RNA interference system, we showed that conditional depletion of HP1 in transgenic flies resulted in preferential lethality in male flies. Cytological analysis of mitotic chromosomes showed that HP1 depletion caused sex-biased chromosomal defects, including telomere fusions. The global levels of specific histone modifications, particularly the hallmarks of active chromatin, were preferentially increased in males as well. Expression analysis showed that approximately twice as many genes were specifically regulated by HP1 in males than in females. Furthermore, HP1-regulated genes showed greater enrichment for HP1 binding in males. Taken together, these results indicate that HP1 modulates chromosomal integrity, histone modifications and transcription in a sex-specific manner.


Asunto(s)
Cromatina/metabolismo , Proteínas Cromosómicas no Histona/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Cromatina/química , Proteínas Cromosómicas no Histona/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Genes de Insecto , Genes Letales , Humanos , Masculino , Mitosis/genética , Datos de Secuencia Molecular , Factores Sexuales , Telómero/metabolismo , Transcripción Genética
16.
Nat Genet ; 37(8): 853-62, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16007088

RESUMEN

Cytosine methylation is required for mammalian development and is often perturbed in human cancer. To determine how this epigenetic modification is distributed in the genomes of primary and transformed cells, we used an immunocapturing approach followed by DNA microarray analysis to generate methylation profiles of all human chromosomes at 80-kb resolution and for a large set of CpG islands. In primary cells we identified broad genomic regions of differential methylation with higher levels in gene-rich neighborhoods. Female and male cells had indistinguishable profiles for autosomes but differences on the X chromosome. The inactive X chromosome (Xi) was hypermethylated at only a subset of gene-rich regions and, unexpectedly, overall hypomethylated relative to its active counterpart. The chromosomal methylation profile of transformed cells was similar to that of primary cells. Nevertheless, we detected large genomic segments with hypomethylation in the transformed cell residing in gene-poor areas. Furthermore, analysis of 6,000 CpG islands showed that only a small set of promoters was methylated differentially, suggesting that aberrant methylation of CpG island promoters in malignancy might be less frequent than previously hypothesized.


Asunto(s)
Cromosomas Humanos , Metilación de ADN , Regiones Promotoras Genéticas , Línea Celular Transformada , Células Cultivadas , Islas de CpG , Femenino , Humanos , Masculino , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
EMBO J ; 28(5): 591-601, 2009 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-19165148

RESUMEN

The ultraviolet-B (UV-B) portion of the solar radiation functions as an environmental signal for which plants have evolved specific and sensitive UV-B perception systems. The UV-B-specific UV RESPONSE LOCUS 8 (UVR8) and the multifunctional E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) are key regulators of the UV-B response. We show here that uvr8-null mutants are deficient in UV-B-induced photomorphogenesis and hypersensitive to UV-B stress, whereas overexpression of UVR8 results in enhanced UV-B photomorphogenesis, acclimation and tolerance to UV-B stress. By using sun simulators, we provide evidence at the physiological level that UV-B acclimation mediated by the UV-B-specific photoregulatory pathway is indeed required for survival in sunlight. At the molecular level, we demonstrate that the wild type but not the mutant UVR8 and COP1 proteins directly interact in a UV-B-dependent, rapid manner in planta. These data collectively suggest that UV-B-specific interaction of COP1 and UVR8 in the nucleus is a very early step in signalling and responsible for the plant's coordinated response to UV-B ensuring UV-B acclimation and protection in the natural environment.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Proteínas Cromosómicas no Histona/fisiología , Rayos Ultravioleta , Aclimatación , Proteínas de Arabidopsis/genética , Proteínas Cromosómicas no Histona/genética , Regulación de la Expresión Génica de las Plantas , Hipocótilo/crecimiento & desarrollo , Hipocótilo/fisiología , Mutación , Unión Proteica , Transducción de Señal/fisiología , Estrés Fisiológico , Luz Solar , Ubiquitina-Proteína Ligasas
18.
Genome Res ; 20(6): 771-80, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20435908

RESUMEN

The replication of a chromosomal region during S phase can be highly dynamic between cell types that differ in transcriptome and epigenome. Early replication timing has been positively correlated with several histone modifications that occur at active genes, while repressive histone modifications mark late replicating regions. This raises the question if chromatin modulates the initiating events of replication. To gain insights into this question, we have studied the function of heterochromatin protein 1 (HP1), which is a reader of repressive methylation at histone H3 lysine 9, in genome-wide organization of replication. Cells with reduced levels of HP1 show an advanced replication timing of centromeric repeats in agreement with the model that repressive chromatin mediates the very late replication of large clusters of constitutive heterochromatin. Surprisingly, however, regions with high levels of interspersed repeats on the chromosomal arms, in particular on chromosome 4 and in pericentromeric regions of chromosome 2, behave differently. Here, loss of HP1 results in delayed replication. The fact that these regions are bound by HP1 suggests a direct effect. Thus while HP1 mediates very late replication of centromeric DNA, it is also required for early replication of euchromatic regions with high levels of repeats. This observation of opposing functions of HP1 suggests a model where HP1-mediated repeat inactivation or replication complex loading on the chromosome arms is required for proper activation of origins of replication that fire early. At the same time, HP1-mediated repression at constitutive heterochromatin is required to ensure replication of centromeric repeats at the end of S phase.


Asunto(s)
Proteínas Cromosómicas no Histona/fisiología , Replicación del ADN , Proteínas de Drosophila/fisiología , Drosophila/genética , Genoma , Animales , Proteínas Cromosómicas no Histona/genética , Cromosomas , Metilación de ADN , Proteínas de Drosophila/genética , Técnicas de Silenciamiento del Gen , Origen de Réplica
19.
Plant Cell ; 22(9): 3177-87, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20858844

RESUMEN

Magnaporthe oryzae causes rice blast, the most serious foliar fungal disease of cultivated rice (Oryza sativa). During hemibiotrophic leaf infection, the pathogen simultaneously combines biotrophic and necrotrophic growth. Here, we provide cytological and molecular evidence that, in contrast to leaf tissue infection, the fungus adopts a uniquely biotrophic infection strategy in roots for a prolonged period and spreads without causing a loss of host cell viability. Consistent with a biotrophic lifestyle, intracellularly growing hyphae of M. oryzae are surrounded by a plant-derived membrane. Global, temporal gene expression analysis used to monitor rice responses to progressive root infection revealed a rapid but transient induction of basal defense-related gene transcripts, indicating perception of the pathogen by the rice root. Early defense gene induction was followed by suppression at the onset of intracellular fungal growth, consistent with the biotrophic nature of root invasion. By contrast, during foliar infection, the vast majority of these transcripts continued to accumulate or increased in abundance. Furthermore, induction of necrotrophy-associated genes during early tissue penetration, previously observed in infected leaves, was not seen in roots. Collectively, our results not only report a global characterization of transcriptional root responses to a biotrophic fungal pathogen but also provide initial evidence for tissue-adapted fungal infection strategies.


Asunto(s)
Magnaporthe/patogenicidad , Oryza/microbiología , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Análisis de Secuencia por Matrices de Oligonucleótidos , Oryza/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Raíces de Plantas/genética , ARN de Planta
20.
GigaByte ; 2023: gigabyte94, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37829656

RESUMEN

Irises are perennial plants, representing a large genus with hundreds of species. While cultivated extensively for their ornamental value, commercial interest in irises lies in the secondary metabolites present in their rhizomes. The Dalmatian Iris (Iris pallida Lam.) is an ornamental plant that also produces secondary metabolites with potential value to the fragrance and pharmaceutical industries. In addition to providing base notes for the fragrance industry, iris tissues and extracts possess antioxidant, anti-inflammatory and immunomodulatory effects. However, study of these secondary metabolites has been hampered by a lack of genomic information, requiring difficult extraction and analysis techniques. Here, we report the genome sequence of Iris pallida Lam., generated with Pacific Bioscience long-read sequencing, resulting in a 10.04-Gbp assembly with a scaffold N50 of 14.34 Mbp and 91.8% complete BUSCOs. This reference genome will allow researchers to study the biosynthesis of these secondary metabolites in much greater detail, opening new avenues of investigation for drug discovery and fragrance formulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA