Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 27(9): 1737-1754, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33547698

RESUMEN

Marine microalgae are a diverse group of microscopic eukaryotic and prokaryotic organisms capable of photosynthesis. They are important primary producers and carbon sinks but their physiology and persistence are severely affected by global climate change. Powerful experimental evolution technologies are being used to examine the potential of microalgae to respond adaptively to current and predicted future conditions, as well as to develop resources to facilitate species conservation and restoration of ecosystem functions. This review synthesizes findings and insights from experimental evolution studies of marine microalgae in response to elevated temperature and/or pCO2 . Adaptation to these environmental conditions has been observed in many studies of marine dinoflagellates, diatoms and coccolithophores. An enhancement in traits such as growth and photo-physiological performance and an increase in upper thermal limit have been shown to be possible, although the extent and rate of change differ between microalgal taxa. Studies employing multiple monoclonal replicates showed variation in responses among replicates and revealed the stochasticity of mutations. The work to date is already providing valuable information on species' climate sensitivity or resilience to managers and policymakers but extrapolating these insights to ecosystem- and community-level impacts continues to be a challenge. We recommend future work should include in situ experiments, diurnal and seasonal fluctuations, multiple drivers and multiple starting genotypes. Fitness trade-offs, stable versus plastic responses and the genetic bases of the changes also need investigating, and the incorporation of genome resequencing into experimental designs will be invaluable.


Asunto(s)
Microalgas , Aclimatación , Cambio Climático , Ecosistema , Microalgas/genética , Océanos y Mares
2.
Proc Natl Acad Sci U S A ; 115(19): 5034-5039, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29610329

RESUMEN

Within the mega-pest lineage of heliothine moths are a number of polyphagous, highly mobile species for which the exchange of adaptive traits through hybridization would affect their properties as pests. The recent invasion of South America by one of the most significant agricultural pests, Helicoverpa armigera, raises concerns for the formation of novel combinations of adaptive genes following hybridization with the closely related Helicoverpa zea To investigate the propensity for hybridization within the genus Helicoverpa, we carried out whole-genome resequencing of samples from six species, focusing in particular upon H. armigera population structure and its relationship with H. zea We show that both H. armigera subspecies have greater genetic diversity and effective population sizes than do the other species. We find no signals for gene flow among the six species, other than between H. armigera and H. zea, with nine Brazilian individuals proving to be hybrids of those two species. Eight had largely H. armigera genomes with some introgressed DNA from H. zea scattered throughout. The ninth resembled an F1 hybrid but with stretches of homozygosity for each parental species that reflect previous hybridization. Regions homozygous for H. armigera-derived DNA in this individual included one containing a gustatory receptor and esterase genes previously associated with host range, while another encoded a cytochrome P450 that confers insecticide resistance. Our data point toward the emergence of novel hybrid ecotypes and highlight the importance of monitoring H. armigera genotypes as they spread through the Americas.


Asunto(s)
Quimera/genética , Flujo Génico , Genoma de los Insectos , Proteínas de Insectos/genética , Resistencia a los Insecticidas/genética , Mariposas Nocturnas/genética , Animales , Especificidad de la Especie
3.
Appl Environ Microbiol ; 86(10)2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32198167

RESUMEN

Burkholderia sp. strain SG-MS1 and Pseudomonas sp. strain SG-MS2 have previously been found to mineralize (+)-pinoresinol through a common catabolic pathway. Here, we used comparative genomics, proteomics, protein semipurification, and heterologous expression to identify a flavoprotein from the vanillyl alcohol oxidase/p-cresol methyl hydroxylase (VAO/PCMH) enzyme family in SG-MS2 that carries out the initial hydroxylation of (+)-pinoresinol at the benzylic carbon. The cognate gene is translationally coupled with a downstream cytochrome gene, and the cytochrome is required for activity. The flavoprotein has a unique combination of cofactor binding and cytochrome requirements for the VAO/PCMH family. The heterologously expressed enzyme has a Km of 1.17 µM for (+)-pinoresinol. The enzyme is overexpressed in strain SG-MS2 upon exposure to (+)-pinoresinol, along with 45 other proteins, 22 of which were found to be encoded by genes in an approximately 35.1-kb cluster also containing the flavoprotein and cytochrome genes. Homologs of 18 of these 22 genes, plus the flavoprotein and cytochrome genes, were also found in a 38.7-kb cluster in SG-MS1. The amino acid identities of four of the other proteins within the SG-MS2 cluster suggest they catalyze conversion of hydroxylated pinoresinol to protocatechuate and 2-methoxyhydroquinone. Nine other proteins upregulated in SG-MS2 on exposure to (+)-pinoresinol appear to be homologs of proteins known to comprise the protocatechuate and 2-methoxyhydroquinone catabolic pathways, but only three of the cognate genes lie within the cluster containing the flavoprotein and cytochrome genes.IMPORTANCE (+)-Pinoresinol is an important plant defense compound, a major food lignan for humans and some other animals, and the model compound used to study degradation of the ß-ß' linkages in lignin. We report a gene cluster, in one strain each of Pseudomonas and Burkholderia, that is involved in the oxidative catabolism of (+)-pinoresinol. The flavoprotein component of the α-hydroxylase which heads the pathway belongs to the 4-phenol oxidizing (4PO) subgroup of the vanillyl alcohol oxidase/p-cresol methyl hydroxylase (VAO/PCMH) enzyme family but constitutes a novel combination of cofactor and electron acceptor properties for the family. It is translationally coupled with a cytochrome gene whose product is also required for activity. The work casts new light on the biology of (+)-pinoresinol and its transformation to other bioactive molecules. Potential applications of the findings include new options for deconstructing lignin into useful chemicals and the generation of new phytoestrogenic enterolactones from lignans.


Asunto(s)
Proteínas Bacterianas/genética , Flavoproteínas/genética , Furanos/metabolismo , Genes Bacterianos/genética , Lignanos/metabolismo , Pseudomonas/genética , Proteínas Bacterianas/metabolismo , Flavoproteínas/metabolismo , Redes y Vías Metabólicas , Familia de Multigenes , Oxidación-Reducción , Pseudomonas/metabolismo
4.
BMC Genet ; 21(Suppl 2): 132, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33339498

RESUMEN

BACKGROUND: Bactrocera tryoni and Bactrocera neohumeralis mate asynchronously; the former mates exclusively around dusk while the latter mates during the day. The two species also differ in the colour of the post-pronotal lobe (callus), which is predominantly yellow in B. tryoni and brown in B. neohumeralis. We have examined the genetic relationship between the two characters in hybrids, backcrosses and multigeneration hybrid progeny. RESULTS: Our analysis of the mating time of the parental species revealed that while B. tryoni mate exclusively at dusk, B. neohumeralis females pair with B. neohumeralis males during the day and with B. tryoni males at dusk. We found considerable variance in mating time and callus colour among hybrid backcross individuals of both sexes but there was a strong although not invariant trend for callus colour to co-segregate with mating time in both sexes. To genetically separate these two phenotypes we allowed the interspecific F1 hybrids to propagate for 25 generations (F25) without selection for mating time or callus colour, finding that the advanced hybrid population had moved towards B. tryoni phenotypes for both traits. Selection for day mating in replicate lines at F25 resulted in significant phenotypic shifts in both traits towards B. neohumeralis phenotypes in F26. However, we were unable to completely recover the mating time profile of B. neohumeralis and relaxation of selection for day mating led to a shift back towards dusk mating, but not yellow callus colour, by F35. CONCLUSION: We conclude that the inheritance of the two major species-defining traits is separable but tightly linked and involves more than one gene in each case. It also appears that laboratory conditions select for the B. tryoni phenotypes for mating time. We discuss our findings in relation to speciation theory and the likely effects of domestication during the generation of mass release strains for sterile insect control programmes.


Asunto(s)
Fotoperiodo , Conducta Sexual Animal , Tephritidae/clasificación , Tephritidae/fisiología , Animales , Cruzamientos Genéticos , Femenino , Ligamiento Genético , Hibridación Genética , Patrón de Herencia , Masculino , Fenotipo
5.
BMC Genet ; 21(Suppl 2): 135, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33339509

RESUMEN

BACKGROUND: The highly polyphagous Queensland fruit fly (Bactrocera tryoni Froggatt) expanded its range substantially during the twentieth century and is now the most economically important insect pest of Australian horticulture, prompting intensive efforts to develop a Sterile Insect Technique (SIT) control program. Using a "common garden" approach, we have screened for natural genetic variation in key environmental fitness traits among populations from across the geographic range of this species and monitored changes in those traits induced during domestication. RESULTS: Significant variation was detected between the populations for heat, desiccation and starvation resistance and wing length (as a measure of body size). Desiccation resistance was correlated with both starvation resistance and wing length. Bioassay data for three resampled populations indicate that much of the variation in desiccation resistance reflects persistent, inherited differences among the populations. No latitudinal cline was detected for any of the traits and only weak correlations were found with climatic variables for heat resistance and wing length. All three stress resistance phenotypes and wing length changed significantly in certain populations with ongoing domestication but there was also a strong population by domestication interaction effect for each trait. CONCLUSIONS: Ecotypic variation in heat, starvation and desiccation resistance was detected in Australian Qfly populations, and these stress resistances diminished rapidly during domestication. Our results indicate a need to select source populations for SIT strains which have relatively high climatic stress resistance and to minimise loss of that resistance during domestication.


Asunto(s)
Clima , Domesticación , Aptitud Genética , Estrés Fisiológico , Tephritidae/genética , Animales , Australia , Variación Genética , Masculino , Fenotipo , Tephritidae/fisiología
6.
Molecules ; 25(18)2020 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-32932681

RESUMEN

The cuticular layer of the insect exoskeleton contains diverse compounds that serve important biological functions, including the maintenance of homeostasis by protecting against water loss, protection from injury, pathogens and insecticides, and communication. Bactrocera tryoni (Froggatt) is the most destructive pest of fruit production in Australia, yet there are no published accounts of this species' cuticular chemistry. We here provide a comprehensive description of B. tryoni cuticular chemistry. We used gas chromatography-mass spectrometry to identify and characterize compounds in hexane extracts of B. tryoni adults reared from larvae in naturally infested fruits. The compounds found included spiroacetals, aliphatic amides, saturated/unsaturated and methyl branched C12 to C20 chain esters and C29 to C33 normal and methyl-branched alkanes. The spiroacetals and esters were found to be specific to mature females, while the amides were found in both sexes. Normal and methyl-branched alkanes were qualitatively the same in all age and sex groups but some of the alkanes differed in amounts (as estimated from internal standard-normalized peak areas) between mature males and females, as well as between mature and immature flies. This study provides essential foundations for studies investigating the functions of cuticular chemistry in this economically important species.


Asunto(s)
Alcanos/química , Carbono/química , Cromatografía de Gases y Espectrometría de Masas , Tephritidae/química , Amidas/química , Animales , Australia , Composición Corporal , Femenino , Larva/química , Masculino , Pupa/química
7.
BMC Genomics ; 20(1): 52, 2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30651071

RESUMEN

BACKGROUND: Insights into the genetic capacities of species to adapt to future climate change can be gained by using comparative genomic and transcriptomic data to reconstruct the genetic changes associated with such adaptations in the past. Here we investigate the genetic changes associated with adaptation to arid environments, specifically climatic extremes and new cactus hosts, through such an analysis of five repleta group Drosophila species. RESULTS: We find disproportionately high rates of gene gains in internal branches in the species' phylogeny where cactus use and subsequently cactus specialisation and high heat and desiccation tolerance evolved. The terminal branch leading to the most heat and desiccation resistant species, Drosophila aldrichi, also shows disproportionately high rates of both gene gains and positive selection. Several Gene Ontology terms related to metabolism were enriched in gene gain events in lineages where cactus use was evolving, while some regulatory and developmental genes were strongly selected in the Drosophila aldrichi branch. Transcriptomic analysis of flies subjected to sublethal heat shocks showed many more downregulation responses to the stress in a heat sensitive versus heat resistant species, confirming the existence of widespread regulatory as well as structural changes in the species' differing adaptations. Gene Ontology terms related to metabolism were enriched in the differentially expressed genes in the resistant species while terms related to stress response were over-represented in the sensitive one. CONCLUSION: Adaptations to new cactus hosts and hot desiccating environments were associated with periods of accelerated evolutionary change in diverse biochemistries. The hundreds of genes involved suggest adaptations of this sort would be difficult to achieve in the timeframes projected for anthropogenic climate change.


Asunto(s)
Adaptación Fisiológica/genética , Cactaceae/fisiología , Clima Desértico , Drosophila/genética , Drosophila/fisiología , Genoma de los Insectos , Animales , Análisis por Conglomerados , Lógica Difusa , Ontología de Genes , Genes de Insecto , Respuesta al Choque Térmico/genética , Anotación de Secuencia Molecular , Filogenia , Selección Genética , Estrés Fisiológico/genética , Transcripción Genética
8.
J Hered ; 110(1): 80-91, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30445496

RESUMEN

We use annotated genomes of 14 Drosophila species covering diverse host use phenotypes to test whether 4 gene families that often have detoxification functions are associated with host shifts among species. Bark, slime flux, flower, and generalist necrotic fruit-feeding species all have similar numbers of carboxyl/cholinesterase, glutathione S-transferase, cytochrome P450, and UDP-glucuronosyltransferase genes. However, species feeding on toxic Morinda citrifolia fruit and the fresh fruit-feeding Drosophila suzukii have about 30 and 60 more, respectively. ABC transporters show a different pattern, with the flower-feeding D. elegans and the generalist necrotic fruit and cactus feeder D. hydei having about 20 and >100 more than the other species, respectively. Surprisingly, despite the complex secondary chemistry we find that 3 cactophilic specialists in the mojavensis species cluster have variably fewer genes than any of the other species across all 4 families. We also find 82 positive selection events across the 4 families, with the terminal D. suzukii and M. citrifolia-feeding D. sechellia branches again having the highest number of such events in proportion to their respective branch lengths. Many of the genes involved in these host-use-specific gene number differences or positive selection events lie in specific clades of the gene families that have been recurrently associated with detoxification. Several genes are also found to be involved in multiple duplication and/or positive selection events across the species studied regardless of their host use phenotypes; the most frequently involved are the ABC transporter CG1718, which is not in a specific clade associated with detoxification, and the α-esterase gene cluster, which is.


Asunto(s)
Drosophila/genética , Conducta Alimentaria , Genes de Insecto , Animales , Cactaceae , Drosophila/fisiología , Alimentos/toxicidad , Frutas , Inactivación Metabólica
9.
Plant Biotechnol J ; 16(10): 1788-1796, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29509999

RESUMEN

Vegetable oils extracted from oilseeds are an important component of foods, but are also used in a range of high value oleochemical applications. Despite being biodegradable, nontoxic and renewable current plant oils suffer from the presence of residual polyunsaturated fatty acids that are prone to free radical formation that limit their oxidative stability, and consequently shelf life and functionality. Many decades of plant breeding have been successful in raising the oleic content to ~90%, but have come at the expense of overall field performance, including poor yields. Here, we engineer superhigh oleic (SHO) safflower producing a seed oil with 93% oleic generated from seed produced in multisite field trials spanning five generations. SHO safflower oil is the result of seed-specific hairpin-based RNA interference of two safflower lipid biosynthetic genes, FAD2.2 and FATB, producing seed oil containing less than 1.5% polyunsaturates and only 4% saturates but with no impact on lipid profiles of leaves and roots. Transgenic SHO events were compared to non-GM safflower in multisite trial plots with a wide range of growing season conditions, which showed no evidence of impact on seed yield. The oxidative stability of the field-grown SHO oil produced from various sites was 50 h at 110°C compared to 13 h for conventional ~80% oleic safflower oils. SHO safflower produces a uniquely stable vegetable oil across different field conditions that can provide the scale of production that is required for meeting the global demands for high stability oils in food and the oleochemical industry.


Asunto(s)
Carthamus tinctorius/metabolismo , Ácidos Oléicos/metabolismo , Interferencia de ARN , Aceite de Cártamo/química , Semillas/metabolismo , Carthamus tinctorius/genética , Oxidación-Reducción
10.
Appl Environ Microbiol ; 84(4)2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29222099

RESUMEN

Pinoresinol is a dimer of two ß-ß'-linked coniferyl alcohol molecules. It is both a plant defense molecule synthesized through the shikimic acid pathway and a representative of several ß-ß-linked dimers produced during the microbial degradation of lignin in dead plant material. Until now, little has been known about the bacterial catabolism of such dimers. Here we report the isolation of the efficient (+)-pinoresinol-mineralizing Pseudomonas sp. strain SG-MS2 and its catabolic pathway. Degradation of pinoresinol in this strain is inducible and proceeds via a novel oxidative route, which is in contrast to the previously reported reductive transformation by other bacteria. Based on enzyme assays and bacterial growth, cell suspension, and resting cell studies, we provide conclusive evidence that pinoresinol degradation in strain SG-MS2 is initiated by benzylic hydroxylation, generating a hemiketal via a quinone methide intermediate, which is then hydrated at the benzylic carbon by water. The hemiketal, which stays in equilibrium with the corresponding keto alcohol, undergoes an aryl-alkyl cleavage to generate a lactone and 2-methoxyhydroquinone. While the fate of 2-methoxyhydroquinone is not investigated further, it is assumed to be assimilated by ring cleavage. The lactone is further metabolized via two routes, namely, lactone ring cleavage and benzylic hydroxylation via a quinone methide intermediate, as described above. The resulting hemiketal again exists in equilibrium with a keto alcohol. Our evidence suggests that both routes of lactone metabolism lead to vanillin and vanillic acid, which we show can then be mineralized by strain SG-MS2.IMPORTANCE The oxidative catabolism of (+)-pinoresinol degradation elucidated here is fundamentally different from the reductive cometabolism reported for two previously characterized bacteria. Our findings open up new opportunities to use lignin for the biosynthesis of vanillin, a key flavoring agent in foods, beverages, and pharmaceuticals, as well as various new lactones. Our work also has implications for the study of new pinoresinol metabolites in human health. The enterodiol and enterolactone produced through reductive transformation of pinoresinol by gut microbes have already been associated with decreased risks of cancer and cardiovascular diseases. The metabolites from oxidative metabolism we find here also deserve attention in this respect.


Asunto(s)
Calcificación Fisiológica/fisiología , Furanos/metabolismo , Lignanos/metabolismo , Redes y Vías Metabólicas , Pseudomonas/aislamiento & purificación , Pseudomonas/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Benzaldehídos/metabolismo , Microbioma Gastrointestinal/fisiología , Humanos , Lignina/metabolismo , Minerales/metabolismo , Pseudomonas/genética
11.
Appl Environ Microbiol ; 84(3)2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29150502

RESUMEN

Carbamate kinases catalyze the conversion of carbamate to carbamoyl phosphate, which is readily transformed into other compounds. Carbamate forms spontaneously from ammonia and carbon dioxide in aqueous solutions, so the kinases have potential for sequestrative utilization of the latter compounds. Here, we compare seven carbamate kinases from mesophilic, thermophilic, and hyperthermophilic sources. In addition to the known enzymes from Enterococcus faecalis and Pyrococcus furiosus, the previously unreported enzymes from the hyperthermophiles Thermococcus sibiricus and Thermococcus barophilus, the thermophiles Fervidobacterium nodosum and Thermosipho melanesiensis, and the mesophile Clostridium tetani were all expressed recombinantly, each in high yield. Only the clostridial enzyme did not show catalysis. In direct assays of carbamate kinase activity, the three hyperthermophilic enzymes display higher specific activities at elevated temperatures, greater stability, and remarkable substrate turnover at alkaline pH (9.9 to 11.4). Thermococcus barophilus and Thermococcus sibiricus carbamate kinases were found to be the most active when the enzymes were tested at 80°C, and maintained activity over broad temperature and pH ranges. These robust thermococcal enzymes therefore represent ideal candidates for biotechnological applications involving aqueous ammonia solutions, since nonbuffered 0.0001 to 1.0 M solutions have pH values of approximately 9.8 to 11.8. As proof of concept, here we also show that carbamoyl phosphate produced by the Thermococcus barophilus kinase is efficiently converted in situ to carbamoyl aspartate by aspartate transcarbamoylase from the same source organism. Using acetyl phosphate to simultaneously recycle the kinase cofactor ATP, at pH 9.9 carbamoyl aspartate is produced in high yield and directly from solutions of ammonia, carbon dioxide, and aspartate.IMPORTANCE Much of the nitrogen in animal wastes and used in fertilizers is commonly lost as ammonia in water runoff, from which it must be removed to prevent downstream pollution and evolution of nitrogenous greenhouse gases. Since carbamate kinases transform ammonia and carbon dioxide to carbamoyl phosphate via carbamate, and carbamoyl phosphate may be converted into other valuable compounds, the kinases provide a route for useful sequestration of ammonia, as well as of carbon dioxide, another greenhouse gas. At the same time, recycling the ammonia in chemical synthesis reduces the need for its energy-intensive production. However, robust catalysts are required for such biotransformations. Here we show that carbamate kinases from hyperthermophilic archaea display remarkable stability and high catalytic activity across broad ranges of pH and temperature, making them promising candidates for biotechnological applications. We also show that carbamoyl phosphate produced by the kinases may be efficiently used to produce carbamoyl aspartate.


Asunto(s)
Álcalis/metabolismo , Anabolizantes/metabolismo , Fosfotransferasas (aceptor de Grupo Carboxilo)/metabolismo , Temperatura , Amoníaco/metabolismo , Carbamatos/metabolismo , Carbamoil Fosfato/metabolismo , Catálisis , Clostridium tetani/enzimología , Clostridium tetani/genética , Clostridium tetani/metabolismo , Enterococcus faecalis/enzimología , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Conformación Proteica , Pyrococcus furiosus/enzimología , Pyrococcus furiosus/genética , Pyrococcus furiosus/metabolismo , Thermococcus/enzimología , Thermococcus/genética , Thermococcus/metabolismo
13.
Biochemistry ; 56(41): 5512-5525, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28929747

RESUMEN

Carboxylesterase (CBE)-mediated metabolic resistance to organophosphate and carbamate insecticides is a major problem for the control of insect disease vectors, such as the mosquito. The most common mechanism involves overexpression of CBEs that bind to the insecticide with high affinity, thereby sequestering them before they can interact with their target. However, the absence of any structure for an insecticide-sequestering CBE limits our understanding of the molecular basis for this process. We present the first structure of a CBE involved in sequestration, Cqestß21, from the mosquito disease vector Culex quinquefasciatus. Lysine methylation was used to obtain the crystal structure of Cqestß21, which adopts a canonical α/ß-hydrolase fold that has high similarity to the target of organophosphate and carbamate insecticides, acetylcholinesterase. Sequence similarity networks of the insect carboxyl/cholinesterase family demonstrate that CBEs associated with metabolic insecticide resistance across many species share a level of similarity that distinguishes them from a variety of other classes. This is further emphasized by the structural similarities and differences in the binding pocket and active site residues of Cqestß21 and other insect carboxyl/cholinesterases. Stopped-flow and steady-state inhibition studies support a major role for Cqestß21 in organophosphate resistance and a minor role in carbamate resistance. Comparison with another isoform associated with insecticide resistance, Cqestß1, showed both enzymes have similar affinity to insecticides, despite 16 amino acid differences between the two proteins. This provides a molecular understanding of pesticide sequestration by insect CBEs and could facilitate the design of CBE-specific inhibitors to circumvent this resistance mechanism in the future.


Asunto(s)
Carboxilesterasa/metabolismo , Culex/enzimología , Proteínas de Insectos/metabolismo , Insecticidas/metabolismo , Modelos Moleculares , Sustitución de Aminoácidos , Animales , Sitios de Unión , Carbamatos/química , Carbamatos/metabolismo , Carboxilesterasa/química , Carboxilesterasa/genética , Dominio Catalítico , Cristalografía por Rayos X , Proteínas de Insectos/química , Proteínas de Insectos/genética , Insecticidas/química , Cinética , Ligandos , Conformación Molecular , Mutación , Organofosfatos/química , Organofosfatos/metabolismo , Filogenia , Conformación Proteica , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidad de la Especie , Umbeliferonas/química , Umbeliferonas/metabolismo
14.
BMC Genomics ; 18(1): 673, 2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-28859620

RESUMEN

BACKGROUND: Distinguishing orthologous and paralogous relationships between genes across multiple species is essential for comparative genomic analyses. Various computational approaches have been developed to resolve these evolutionary relationships, but strong trade-offs between precision and recall of orthologue prediction remains an ongoing challenge. RESULTS: Here we present Orthonome, an orthologue prediction pipeline, designed to reduce the trade-off between orthologue capture rates (recall) and accuracy of multi-species orthologue prediction. The pipeline compares sequence domains and then forms sequence-similar clusters before using phylogenetic comparisons to identify inparalogues. It then corrects sequence similarity metrics for fragment and gene length bias using a novel scoring metric capturing relationships between full length as well as fragmented genes. The remaining genes are then brought together for the identification of orthologues within a phylogenetic framework. The orthologue predictions are further calibrated along with inparalogues and gene births, using synteny, to identify novel orthologous relationships. We use 12 high quality Drosophila genomes to show that, compared to other orthologue prediction pipelines, Orthonome provides orthogroups with minimal error but high recall. Furthermore, Orthonome is resilient to suboptimal assembly/annotation quality, with the inclusion of draft genomes from eight additional Drosophila species still providing >6500 1:1 orthologues across all twenty species while retaining a better combination of accuracy and recall than other pipelines. Orthonome is implemented as a searchable database and query tool along with multiple-sequence alignment browsers for all sets of orthologues. The underlying documentation and database are accessible at http://www.orthonome.com . CONCLUSION: We demonstrate that Orthonome provides a superior combination of orthologue capture rates and accuracy on complete and draft drosophilid genomes when tested alongside previously published pipelines. The study also highlights a greater degree of evolutionary conservation across drosophilid species than earlier thought.


Asunto(s)
Genómica/métodos , Homología de Secuencia de Ácido Nucleico , Animales , Drosophila melanogaster/genética , Evolución Molecular
15.
Appl Environ Microbiol ; 82(23): 6810-6818, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27637879

RESUMEN

A defining feature of mycobacterial redox metabolism is the use of an unusual deazaflavin cofactor, F420 This cofactor enhances the persistence of environmental and pathogenic mycobacteria, including after antimicrobial treatment, although the molecular basis for this remains to be understood. In this work, we explored our hypothesis that F420 enhances persistence by serving as a cofactor in antimicrobial-detoxifying enzymes. To test this, we performed a series of phenotypic, biochemical, and analytical chemistry studies in relation to the model soil bacterium Mycobacterium smegmatis Mutant strains unable to synthesize or reduce F420 were found to be more susceptible to a wide range of antibiotic and xenobiotic compounds. Compounds from three classes of antimicrobial compounds traditionally resisted by mycobacteria inhibited the growth of F420 mutant strains at subnanomolar concentrations, namely, furanocoumarins (e.g., methoxsalen), arylmethanes (e.g., malachite green), and quinone analogues (e.g., menadione). We demonstrated that promiscuous F420H2-dependent reductases directly reduce these compounds by a mechanism consistent with hydride transfer. Moreover, M. smegmatis strains unable to make F420H2 lost the capacity to reduce and detoxify representatives of the furanocoumarin and arylmethane compound classes in whole-cell assays. In contrast, mutant strains were only slightly more susceptible to clinical antimycobacterials, and this appeared to be due to indirect effects of F420 loss of function (e.g., redox imbalance) rather than loss of a detoxification system. Together, these data show that F420 enhances antimicrobial resistance in mycobacteria and suggest that one function of the F420H2-dependent reductases is to broaden the range of natural products that mycobacteria and possibly other environmental actinobacteria can reductively detoxify.IMPORTANCE This study reveals that a unique microbial cofactor, F420, is critical for antimicrobial resistance in the environmental actinobacterium Mycobacterium smegmatis We show that a superfamily of redox enzymes, the F420H2-dependent reductases, can reduce diverse antimicrobials in vitro and in vivoM. smegmatis strains unable to make or reduce F420 become sensitive to inhibition by these antimicrobial compounds. This suggests that mycobacteria have harnessed the unique properties of F420 to reduce structurally diverse antimicrobials as part of the antibiotic arms race. The F420H2-dependent reductases that facilitate this process represent a new class of antimicrobial-detoxifying enzymes with potential applications in bioremediation and biocatalysis.

16.
Proc Natl Acad Sci U S A ; 110(25): 10177-82, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23733941

RESUMEN

Insect carboxylesterases from the αEsterase gene cluster, such as αE7 (also known as E3) from the Australian sheep blowfly Lucilia cuprina (LcαE7), play an important physiological role in lipid metabolism and are implicated in the detoxification of organophosphate (OP) insecticides. Despite the importance of OPs to agriculture and the spread of insect-borne diseases, the molecular basis for the ability of α-carboxylesterases to confer OP resistance to insects is poorly understood. In this work, we used laboratory evolution to increase the thermal stability of LcαE7, allowing its overexpression in Escherichia coli and structure determination. The crystal structure reveals a canonical α/ß-hydrolase fold that is very similar to the primary target of OPs (acetylcholinesterase) and a unique N-terminal α-helix that serves as a membrane anchor. Soaking of LcαE7 crystals in OPs led to the capture of a crystallographic snapshot of LcαE7 in its phosphorylated state, which allowed comparison with acetylcholinesterase and rationalization of its ability to protect insects against the effects of OPs. Finally, inspection of the active site of LcαE7 reveals an asymmetric and hydrophobic substrate binding cavity that is well-suited to fatty acid methyl esters, which are hydrolyzed by the enzyme with specificity constants (∼10(6) M(-1) s(-1)) indicative of a natural substrate.


Asunto(s)
Carboxilesterasa/química , Carboxilesterasa/metabolismo , Dípteros/efectos de los fármacos , Dípteros/enzimología , Resistencia a Medicamentos/fisiología , Insecticidas/química , Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo , Animales , Australia , Carboxilesterasa/genética , Dominio Catalítico/fisiología , Cristalografía por Rayos X , Genes de Insecto/fisiología , Fosforilación/fisiología , Estructura Secundaria de Proteína/fisiología , Ovinos , Enfermedades de las Ovejas/parasitología , Enfermedades de las Ovejas/prevención & control , Especificidad por Sustrato
17.
Appl Environ Microbiol ; 81(23): 8164-76, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26386069

RESUMEN

Lignin is a complex aromatic polymer found in plant cell walls that makes up 15 to 40% of plant biomass. The degradation of lignin substructures by bacteria is of emerging interest because it could provide renewable alternative feedstocks and intermediates for chemical manufacturing industries. We have isolated a bacterium, strain SG61-1L, that rapidly degrades all of the stereoisomers of one lignin substructure, guaiacylglycerol-ß-guaiacyl ether (GGE), which contains a key ß-O-4 linkage found in most intermonomer linkages in lignin. In an effort to understand the rapid degradation of GGE by this bacterium, we heterologously expressed and kinetically characterized a suite of dehydrogenase candidates for the first known step of GGE degradation. We identified a clade of active GGE dehydrogenases and also several other dehydrogenases outside this clade that were all able to oxidize GGE. Several candidates exhibited stereoselectivity toward the GGE stereoisomers, while others had higher levels of catalytic performance than previously described GGE dehydrogenases for all four stereoisomers, indicating a variety of potential applications for these enzymes in the manufacture of lignin-derived commodities.


Asunto(s)
Proteínas Bacterianas/genética , Guaifenesina/análogos & derivados , Lignina/metabolismo , Sphingomonadaceae/genética , Deshidrogenasas del Alcohol de Azúcar/genética , Proteínas Bacterianas/metabolismo , Catálisis , Guaifenesina/metabolismo , Cinética , Oxidación-Reducción , Filogenia , Sphingomonadaceae/metabolismo , Estereoisomerismo , Deshidrogenasas del Alcohol de Azúcar/metabolismo
18.
Appl Environ Microbiol ; 81(7): 2612-24, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25636851

RESUMEN

The amidohydrolase superfamily has remarkable functional diversity, with considerable structural and functional annotation of known sequences. In microbes, the recent evolution of several members of this family to catalyze the breakdown of environmental xenobiotics is not well understood. An evolutionary transition from binuclear to mononuclear metal ion coordination at the active sites of these enzymes could produce large functional changes such as those observed in nature, but there are few clear examples available to support this hypothesis. To investigate the role of binuclear-mononuclear active-site transitions in the evolution of new function in this superfamily, we have characterized two recently evolved enzymes that catalyze the hydrolysis of the synthetic herbicides molinate (MolA) and phenylurea (PuhB). In this work, the crystal structures, mutagenesis, metal ion analysis, and enzyme kinetics of both MolA and PuhB establish that these enzymes utilize a mononuclear active site. However, bioinformatics and structural comparisons reveal that the closest putative ancestor of these enzymes had a binuclear active site, indicating that a binuclear-mononuclear transition has occurred. These proteins may represent examples of evolution modifying the characteristics of existing catalysts to satisfy new requirements, specifically, metal ion rearrangement leading to large leaps in activity that would not otherwise be possible.


Asunto(s)
Amidohidrolasas/química , Amidohidrolasas/metabolismo , Azepinas/metabolismo , Bacterias/enzimología , Bacterias/genética , Diurona/metabolismo , Herbicidas/metabolismo , Tiocarbamatos/metabolismo , Amidohidrolasas/genética , Biotransformación , Dominio Catalítico , Coenzimas/análisis , Biología Computacional , Cristalografía por Rayos X , Análisis Mutacional de ADN , Evolución Molecular , Hidrólisis , Cinética , Metales/análisis , Modelos Moleculares , Conformación Proteica
19.
Appl Environ Microbiol ; 81(4): 1190-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25501483

RESUMEN

We have known for 40 years that soils can consume the trace amounts of molecular hydrogen (H2) found in the Earth's atmosphere.This process is predicted to be the most significant term in the global hydrogen cycle. However, the organisms and enzymes responsible for this process were only recently identified. Pure culture experiments demonstrated that several species of Actinobacteria, including streptomycetes and mycobacteria, can couple the oxidation of atmospheric H2 to the reduction of ambient O2. A combination of genetic, biochemical, and phenotypic studies suggest that these organisms primarily use this fuel source to sustain electron input into the respiratory chain during energy starvation. This process is mediated by a specialized enzyme, the group 5 [NiFe]-hydrogenase, which is unusual for its high affinity, oxygen insensitivity, and thermostability. Atmospheric hydrogen scavenging is a particularly dependable mode of energy generation, given both the ubiquity of the substrate and the stress tolerance of its catalyst. This minireview summarizes the recent progress in understanding how and why certain organisms scavenge atmospheric H2. In addition, it provides insight into the wider significance of hydrogen scavenging in global H2 cycling and soil microbial ecology.


Asunto(s)
Actinobacteria/metabolismo , Proteínas Bacterianas/metabolismo , Hidrógeno/metabolismo , Hidrogenasas/metabolismo , Actinobacteria/enzimología , Actinobacteria/genética , Microbiología del Aire , Atmósfera/química , Proteínas Bacterianas/genética , Ecosistema , Hidrogenasas/genética
20.
Mol Ecol ; 24(19): 4901-11, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26331997

RESUMEN

Migration is a key life history strategy for many animals and requires a suite of behavioural, morphological and physiological adaptations which together form the 'migratory syndrome'. Genetic variation has been demonstrated for many traits that make up this syndrome, but the underlying genes involved remain elusive. Recent studies investigating migration-associated genes have focussed on sampling migratory and nonmigratory populations from different geographic locations but have seldom explored phenotypic variation in a migratory trait. Here, we use a novel combination of tethered flight and next-generation sequencing to determine transcriptomic differences associated with flight activity in a globally invasive moth pest, the cotton bollworm Helicoverpa armigera. By developing a state-of-the-art phenotyping platform, we show that field-collected H. armigera display continuous variation in flight performance with individuals capable of flying up to 40 km during a single night. Comparative transcriptomics of flight phenotypes drove a gene expression analysis to reveal a suite of expressed candidate genes which are clearly related to physiological adaptations required for long-distance flight. These include genes important to the mobilization of lipids as flight fuel, the development of flight muscle structure and the regulation of hormones that influence migratory physiology. We conclude that the ability to express this complex set of pathways underlines the remarkable flexibility of facultative insect migrants to respond to deteriorating conditions in the form of migratory flight and, more broadly, the results provide novel insights into the fundamental transcriptional changes required for migration in insects and other taxa.


Asunto(s)
Migración Animal , Vuelo Animal , Genoma de los Insectos , Mariposas Nocturnas/genética , Transcriptoma , Adaptación Fisiológica/genética , Animales , China , Genética de Población , Grecia , Especies Introducidas , Mariposas Nocturnas/fisiología , Fenotipo , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA