Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Bacteriol ; 204(9): e0054121, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36000834

RESUMEN

Contact-dependent growth inhibition (CDI) systems mediate interbacterial antagonism between Gram-negative bacteria by delivering the toxic portion of a large surface protein (termed BcpA in Burkholderia species) to the cytoplasm of neighboring bacteria. Translocation of the antibacterial polypeptide into recipient cells requires specific recipient outer and inner membrane proteins, but the identity of these factors outside several model organisms is unknown. To identify genes involved in CDI susceptibility in the Burkholderia cepacia complex member Burkholderia dolosa, a transposon mutagenesis selection approach was used to enrich for mutants resistant to BcpA-1 or BcpA-2. Subsequent analysis showed that candidate regulatory genes contributed modestly to recipient cell susceptibility to B. dolosa CDI. However, most candidate deletion mutants did not show the same phenotypes as the corresponding transposon mutants. Whole-genome resequencing revealed that these transposon mutants also contained unique mutations within a three gene locus (wabO, BDAG_01006, and BDAG_01005) encoding predicted lipopolysaccharide (LPS) biosynthesis enzymes. B. dolosa wabO, BDAG_01006, or BDAG_01005 mutants were resistant to CDI and produced LPS with altered core oligosaccharide and O-antigen. Although BcpA-1 and BcpA-2 are dissimilar and expected to utilize different outer membrane receptors, intoxication by both proteins was similarly impacted by LPS changes. Together, these findings suggest that alterations in cellular regulation may indirectly impact the efficiency of CDI-mediated competition and demonstrate that LPS is required for intoxication by two distinct B. dolosa BcpA proteins. IMPORTANCEContact-dependent growth inhibition (CDI) system proteins, produced by many Gram-negative bacteria, are narrow spectrum antimicrobials that inhibit the growth of closely related neighboring bacteria. Here, we use the opportunistic pathogen Burkholderia dolosa to identify genes required for intoxication by two distinct CDI system proteins. Our findings suggest that B. dolosa recipient cells targeted by CDI systems are only intoxicated if they produce full-length lipopolysaccharide. Understanding the mechanisms underlying antagonistic interbacterial interactions may contribute to future therapeutic development.


Asunto(s)
Complejo Burkholderia cepacia , Burkholderia , Antibacterianos/farmacología , Biopelículas , Burkholderia/metabolismo , Complejo Burkholderia cepacia/genética , Lipopolisacáridos , Proteínas de la Membrana/metabolismo , Antígenos O
2.
Genomics ; 112(2): 1096-1104, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31247332

RESUMEN

Hymenopteran parasitoid wasps are a diverse collection of species that infect arthropod hosts and use factors found in their venoms to manipulate host immune responses, physiology, and behaviour. Whole parasitoid venoms have been profiled using proteomic approaches, and here we present a bioinformatic characterization of the venom protein content from Ganaspis sp. 1, a parasitoid that infects flies of the genus Drosophila. We find evidence that diverse evolutionary processes including multifunctionalization, co-option, gene duplication, and horizontal gene transfer may be acting in concert to drive venom gene evolution in Ganaspis sp.1. One major role of parasitoid wasp venom is host immune evasion. We previously demonstrated that Ganaspis sp. 1 venom inhibits immune cell activation in infected Drosophila melanogaster hosts, and our current analysis has uncovered additional predicted virulence functions. Overall, this analysis represents an important step towards understanding the composition and activity of parasitoid wasp venoms.


Asunto(s)
Venenos de Artrópodos/genética , Evolución Molecular , Avispas/genética , Animales , Venenos de Artrópodos/metabolismo , Drosophila melanogaster/inmunología , Drosophila melanogaster/parasitología , Duplicación de Gen , Transferencia de Gen Horizontal , Evasión Inmune , Proteoma/genética , Proteoma/metabolismo , Avispas/patogenicidad
3.
J Bacteriol ; 201(12)2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30962350

RESUMEN

Burkholderia species, including opportunistic pathogens in the Burkholderia cepacia complex (Bcc), have genes to produce contact-dependent growth inhibition (CDI) system proteins. CDI is a phenomenon in which Gram-negative bacteria use the toxic C terminus of a polymorphic surface-exposed exoprotein, BcpA, to inhibit the growth of susceptible bacteria upon direct cell-cell contact. Production of a small immunity protein, BcpI, prevents autoinhibition. Although CDI systems appear widespread in Gram-negative bacteria, their function has been primarily examined in several model species. Here we demonstrate that genes encoding predicted CDI systems in Bcc species exhibit considerable diversity. We also show that Burkholderia multivorans, which causes pulmonary infections in patients with cystic fibrosis, expresses genes that encode two CDI systems, both of which appear distinct from the typical Burkholderia-type CDI system. Each system can mediate intrastrain interbacterial competition and contributes to bacterial adherence. Surprisingly, the immunity-protein-encoding bcpI gene of CDI system 1 could be mutated without obvious deleterious effects. We also show that nonpathogenic Burkholderia thailandensis uses CDI to control B. multivorans growth during coculture, providing one of the first examples of interspecies CDI and suggesting that CDI systems could be manipulated to develop therapeutic strategies targeting Bcc pathogens.IMPORTANCE Competition among bacteria affects microbial colonization of environmental niches and host organisms, particularly during polymicrobial infections. The Bcc is a group of environmental bacteria that can cause life-threatening opportunistic infections in patients who have cystic fibrosis or are immunocompromised. Understanding the mechanisms used by these bacterial pathogens to compete with one another may lead to the development of more effective therapies. Findings presented here demonstrate that a Bcc species, Burkholderia multivorans, produces functional CDI system proteins and that growth of this pathogen can be controlled by CDI system proteins produced by neighboring Burkholderia cells.


Asunto(s)
Proteínas Bacterianas/genética , Complejo Burkholderia cepacia/crecimiento & desarrollo , Complejo Burkholderia cepacia/genética , Interacciones Microbianas/genética , Adhesión Bacteriana , Biopelículas/crecimiento & desarrollo , Burkholderia/fisiología , Complejo Burkholderia cepacia/fisiología , Variación Genética , Eliminación de Secuencia
4.
mSphere ; 9(7): e0025624, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38920371

RESUMEN

Host-microbe biology (HMB) stands on the cusp of redefinition, challenging conventional paradigms to instead embrace a more holistic understanding of the microbial sciences. The American Society for Microbiology (ASM) Council on Microbial Sciences hosted a virtual retreat in 2023 to identify the future of the HMB field and innovations needed to advance the microbial sciences. The retreat presentations and discussions collectively emphasized the interconnectedness of microbes and their profound influence on humans, animals, and environmental health, as well as the need to broaden perspectives to fully embrace the complexity of these interactions. To advance HMB research, microbial scientists would benefit from enhancing interdisciplinary and transdisciplinary research to utilize expertise in diverse fields, integrate different disciplines, and promote equity and accessibility within HMB. Data integration will be pivotal in shaping the future of HMB research by bringing together varied scientific perspectives, new and innovative techniques, and 'omics approaches. ASM can empower under-resourced groups with the goal of ensuring that the benefits of cutting-edge research reach every corner of the scientific community. Thus, ASM will be poised to steer HMB toward a future that champions inclusivity, innovation, and accessible scientific progress.


Asunto(s)
Interacciones Microbiota-Huesped , Microbiología , Humanos , Microbiología/tendencias , Estados Unidos , Animales , Sociedades Científicas , Microbiota
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA