Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 230: 115607, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36965793

RESUMEN

This paper summarizes recent insights into causal biological mechanisms underlying the carcinogenicity of asbestos. It addresses their implications for the shapes of exposure-response curves and considers recent epidemiologic trends in malignant mesotheliomas (MMs) and lung fiber burden studies. Since the commercial amphiboles crocidolite and amosite pose the highest risk of MMs and contain high levels of iron, endogenous and exogenous pathways of iron injury and repair are discussed. Some practical implications of recent developments are that: (1) Asbestos-cancer exposure-response relationships should be expected to have non-zero background rates; (2) Evidence from inflammation biology and other sources suggests that there are exposure concentration thresholds below which exposures do not increase inflammasome-mediated inflammation or resulting inflammation-mediated cancer risks above background risk rates; and (3) The size of the suggested exposure concentration threshold depends on both the detailed time patterns of exposure on a time scale of hours to days and also on the composition of asbestos fibers in terms of their physiochemical properties. These conclusions are supported by complementary strands of evidence including biomathematical modeling, cell biology and biochemistry of asbestos-cell interactions in vitro and in vivo, lung fiber burden analyses and epidemiology showing trends in human exposures and MM rates.


Asunto(s)
Amianto , Neoplasias Pulmonares , Mesotelioma , Humanos , Amianto/toxicidad , Mesotelioma/inducido químicamente , Mesotelioma/epidemiología , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/epidemiología , Pulmón/patología , Asbestos Anfíboles/toxicidad , Inflamación/metabolismo
2.
Part Fibre Toxicol ; 20(1): 9, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-36997977

RESUMEN

BACKGROUND: Toxicokinetics of nanomaterials, including studies on the absorption, distribution, metabolism, and elimination of nanomaterials, are essential in assessing their potential health effects. The fate of nanomaterials after inhalation exposure to multiple nanomaterials is not clearly understood. METHODS: Male Sprague-Dawley rats were exposed to similar sizes of silver nanoparticles (AgNPs, 10.86 nm) and gold nanoparticles (AuNPs, 10.82 nm) for 28 days (6-h/day, 5-days/week for four weeks) either with separate NP inhalation exposures or with combined co-exposure in a nose-only inhalation system. Mass concentrations sampled from the breathing zone were AuNP 19.34 ± 2.55 µg/m3 and AgNP 17.38 ± 1.88 µg/m3 for separate exposure and AuNP 8.20 µg/m3 and AgNP 8.99 µg/m3 for co-exposure. Lung retention and clearance were previously determined on day 1 (6-h) of exposure (E-1) and on post-exposure days 1, 7, and 28 (PEO-1, PEO-7, and PEO-28, respectively). In addition, the fate of nanoparticles, including translocation and elimination from the lung to the major organs, were determined during the post-exposure observation period. RESULTS: AuNP was translocated to the extrapulmonary organs, including the liver, kidney, spleen, testis, epididymis, olfactory bulb, hilar and brachial lymph nodes, and brain after subacute inhalation and showed biopersistence regardless of AuNP single exposure or AuNP + AgNP co-exposure, showing similar elimination half-time. In contrast, Ag was translocated to the tissues and rapidly eliminated from the tissues regardless of AuNP co-exposure. Ag was continually accumulated in the olfactory bulb and brain and persistent until PEO-28. CONCLUSION: Our co-exposure study of AuNP and AgNP indicated that soluble AgNP and insoluble AuNP translocated differently, showing soluble AgNP could be dissolved into Ag ion to translocate to the extrapulmonary organs and rapidly removed from most organs except the brain and olfactory bulb. Insoluble AuNPs were continually translocated to the extrapulmonary organs, and they were not eliminated rapidly.


Asunto(s)
Oro , Nanopartículas del Metal , Ratas , Animales , Masculino , Ratas Sprague-Dawley , Oro/metabolismo , Nanopartículas del Metal/toxicidad , Plata/metabolismo , Pulmón/metabolismo , Tamaño de la Partícula
3.
Part Fibre Toxicol ; 19(1): 56, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945578

RESUMEN

BACKGROUND: Air pollution has been associated with neurodevelopmental disorders in epidemiological studies. In our studies in mice, developmental exposures to ambient ultrafine particulate (UFP) matter either postnatally or gestationally results in neurotoxic consequences that include brain metal dyshomeostasis, including significant increases in brain Fe. Since Fe is redox active and neurotoxic to brain in excess, this study examined the extent to which postnatal Fe inhalation exposure, might contribute to the observed neurotoxicity of UFPs. Mice were exposed to 1 µg/m3 Fe oxide nanoparticles alone, or in conjunction with sulfur dioxide (Fe (1 µg/m3) + SO2 (SO2 at 1.31 mg/m3, 500 ppb) from postnatal days 4-7 and 10-13 for 4 h/day. RESULTS: Overarching results included the observations that Fe + SO2 produced greater neurotoxicity than did Fe alone, that females appeared to show greater vulnerability to these exposures than did males, and that profiles of effects differed by sex. Consistent with metal dyshomeostasis, both Fe only and Fe + SO2 exposures altered correlations of Fe and of sulfur (S) with other metals in a sex and tissue-specific manner. Specifically, altered metal levels in lung, but particularly in frontal cortex were found, with reductions produced by Fe in females, but increases produced by Fe + SO2 in males. At PND14, marked changes in brain frontal cortex and striatal neurotransmitter systems were observed, particularly in response to combined Fe + SO2 as compared to Fe only, in glutamatergic and dopaminergic functions that were of opposite directions by sex. Changes in markers of trans-sulfuration in frontal cortex likewise differed in females as compared to males. Residual neurotransmitter changes were limited at PND60. Increases in serum glutathione and Il-1a were female-specific effects of combined Fe + SO2. CONCLUSIONS: Collectively, these findings suggest a role for the Fe contamination in air pollution in the observed neurotoxicity of ambient UFPs and that such involvement may be different by chemical mixture. Translation of such results to humans requires verification, and, if found, would suggest a need for regulation of Fe in air for public health protection.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Síndromes de Neurotoxicidad , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Animales , Encéfalo , Femenino , Humanos , Hierro/farmacología , Masculino , Metales , Ratones , Síndromes de Neurotoxicidad/etiología , Neurotransmisores/farmacología , Material Particulado/análisis , Material Particulado/toxicidad
4.
Part Fibre Toxicol ; 18(1): 5, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33478543

RESUMEN

BACKGROUND: Inhalation exposure to nanomaterials in workplaces can include a mixture of multiple nanoparticles. Such ambient nanoparticles can be of high dissolution or low dissolution in vivo and we wished to determine whether co-exposure to particles with different dissolution rates affects their biokinetics. METHODS AND RESULTS: Rats were exposed to biosoluble silver nanoparticles (AgNPs, 10.86 nm) and to biopersistent gold nanoparticles (AuNPs, 10.82 nm) for 28 days (6-h/day, 5-days/week for 4 weeks) either with separate NP inhalation exposures or with combined co-exposure. The separate NPs mass concentrations estimated by the differential mobility analyzer system (DMAS) were determined to be 17.68 ± 1.69 µg/m3 for AuNP and 10.12 ± 0.71 µg/m3 for AgNP. In addition, mass concentrations analyzed by atomic absorption spectrometer (AAS) via filter sampling were for AuNP 19.34 ± 2.55 µg/m3 and AgNP 17.38 ± 1.88 µg/m3 for separate exposure and AuNP 8.20 ± 1.05 µg/m3 and AgNP 8.99 ± 1.77 µg/m3 for co-exposure. Lung retention and clearance were determined on day 1 (6-h) of exposure (E-1) and on post-exposure days 1, 7, and 28 (PEO-1, PEO-7, and PEO-28, respectively). While the AgNP and AuNP deposition rates were determined to be similar due to the similarity of NP size of both aerosols, the retention half-times and clearance rates differed due to the difference in dissolution rates. Thus, when comparing the lung burdens following separate exposures, the AgNP retention was 10 times less than the AuNP retention at 6-h (E-1), and 69, 89, and 121 times lower less than the AuNP retention at PEO-1, PEO-7, and PEO-28, respectively. In the case of AuNP+AgNP co-exposure, the retained AgNP lung burden was 14 times less than the retained AuNP lung burden at E-1, and 26, 43, and 55 times less than the retained AuNP lung burden at PEO-1, PEO-7, and PEO-28, respectively. The retention of AuNP was not affected by the presence of AgNP, but AgNP retention was influenced in the presence of AuNP starting at 24 h after the first day of post day of exposure. The clearance of AgNPs of the separate exposure showed 2 phases; fast (T1/2 3.1 days) and slow (T1/2 48.5 days), while the clearance of AuNPs only showed one phase (T1/2 .81.5 days). For the co-exposure of AuNPs+AgNPs, the clearance of AgNPs also showed 2 phases; fast (T1/2 2.2 days) and slow (T1/2 28.4 days), while the clearance of AuNPs consistently showed one phase (T1/2 54.2 days). The percentage of Ag lung burden in the fast and slow clearing lung compartment was different between separate and combined exposure. For the combined exposure, the slow and fast compartments were each 50% of the lung burden. For the single exposure, 1/3 of the lung burden was cleared by the fast rate and 2/3 of the lung burden by the slow rate. CONCLUSIONS: The clearance of AgNPs follows a two- phase model of fast and slow dissolution rates while the clearance of AuNPs could be described by a one- phase model with a longer half-time. The co-exposure of AuNPs+AgNPs showed that the clearance of AgNPs was altered by the presence of AuNPs perhaps due to some interaction between AgNP and AuNP affecting dissolution and/or mechanical clearance of AgNP in vivo.


Asunto(s)
Nanopartículas del Metal , Material Particulado/toxicidad , Animales , Oro/toxicidad , Exposición por Inhalación/análisis , Pulmón , Nanopartículas del Metal/toxicidad , Tamaño de la Partícula , Ratas , Plata/toxicidad
5.
Chem Res Toxicol ; 33(5): 1145-1162, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32349469

RESUMEN

A variety of imaging and analytical methods have been developed to study nanoparticles in cells. Each has its benefits, limitations, and varying degrees of expense and difficulties in implementation. High-resolution analytical scanning transmission electron microscopy (HRSTEM) has the unique ability to image local cellular environments adjacent to a nanoparticle at near atomic resolution and apply analytical tools to these environments such as energy dispersive spectroscopy and electron energy loss spectroscopy. These tools can be used to analyze particle location, translocation and potential reformation, ion dispersion, and in vivo synthesis of second-generation nanoparticles. Such analyses can provide in depth understanding of tissue-particle interactions and effects that are caused by the environmental "invader" nanoparticles. Analytical imaging can also distinguish phases that form due to the transformation of "invader" nanoparticles in contrast to those that are triggered by a response mechanism, including the commonly observed iron biomineralization in the form of ferritin nanoparticles. The analyses can distinguish ion species, crystal phases, and valence of parent nanoparticles and reformed or in vivo synthesized phases throughout the tissue. This article will briefly review the plethora of methods that have been developed over the last 20 years with an emphasis on the state-of-the-art techniques used to image and analyze nanoparticles in cells and highlight the sample preparation necessary for biological thin section observation in a HRSTEM. Specific applications that provide visual and chemical mapping of the local cellular environments surrounding parent nanoparticles and second-generation phases are demonstrated, which will help to identify novel nanoparticle-produced adverse effects and their associated mechanisms.


Asunto(s)
Nanoestructuras/efectos adversos , Nanoestructuras/análisis , Especificidad de Órganos , Microscopía Electrónica de Transmisión
6.
Part Fibre Toxicol ; 17(1): 54, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33081787

RESUMEN

BACKGROUND: Information on particle deposition, retention, and clearance is important when evaluating the risk of inhaled nanomaterials to human health. The revised Organization Economic Cooperation and Development (OECD) inhalation toxicity test guidelines now require lung burden measurements of nanomaterials after rodent subacute and sub-chronic inhalation exposure (OECD 412, OECD 413) to inform on lung clearance behavior and translocation after exposure and during post-exposure observation (PEO). Lung burden measurements are particularly relevant when the testing chemical is a solid poorly soluble nanomaterial. Previously, the current authors showed that total retained lung burden of inhaled soluble silver nanoparticles (AgNPs) could be effectively measured using any individual lung lobe. METHODS AND RESULTS: Accordingly, the current study investigated the evenness of deposition/retention of poorly soluble gold nanoparticles (AuNPs) after 1 and 5 days of inhalation exposure. Rats were exposed nose-only for 1 or 5 days (6 h/day) to an aerosol of 11 nm well-dispersed AuNPs. Thereafter, the five lung lobes were separated and the gold concentrations measured using an inductively coupled plasma-mass spectrophotometer (ICP-MS). The results showed no statistically significant difference in the AuNP deposition/retention among the different lung lobes in terms of the gold mass per gram of lung tissue. CONCLUSIONS: Thus, it would seem that any rat lung lobe can be used for the lung burden analysis after short or long-term NP inhalation, while the other lobes can be used for collecting and analyzing the bronchoalveolar lavage fluid (BALF) and for the histopathological analysis. Therefore, combining the lung burden measurement, histopathological tissue preparation, and BALF assay from one rat can minimize the number of animals used and maximize the number of endpoints measured.


Asunto(s)
Contaminantes Atmosféricos/metabolismo , Oro/metabolismo , Pulmón , Nanopartículas del Metal/análisis , Administración por Inhalación , Aerosoles , Contaminantes Atmosféricos/toxicidad , Animales , Líquido del Lavado Bronquioalveolar , Oro/toxicidad , Exposición por Inhalación , Nanopartículas del Metal/toxicidad , Tamaño de la Partícula , Ratas , Plata/química , Plata/toxicidad , Distribución Tisular
7.
Part Fibre Toxicol ; 17(1): 33, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678050

RESUMEN

In their Commentary Saber et al. (Part Fibre Toxicol 16: 44, 2019) argue that chronic inhalation studies in rats can be used for assessing the lung cancer risk of insoluble nanomaterials. The authors make several significant errors in their interpretation and representation of the underlying science. In this Letter to the Editor we discuss these inaccuracies to correct the scientific record. When the science is recounted accurately it does not support Saber et al's statements and conclusions.


Asunto(s)
Neoplasias Pulmonares , Pulmón , Administración por Inhalación , Animales , Ratas
8.
Toxicol Pathol ; 47(8): 976-992, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31610749

RESUMEN

Epidemiological studies report associations between air pollution (AP) exposures and several neurodevelopmental disorders including autism, attention deficit disorder, and cognitive delays. Our studies in mice of postnatal (human third trimester brain equivalent) exposures to concentrated ambient ultrafine particles (CAPs) provide biological plausibility for these associations, producing numerous neuropathological and behavioral features of these disorders, including male-biased vulnerability. These findings raise questions about the specific components of AP that underlie its neurotoxicity, which our studies suggest could involve trace elements as candidate neurotoxicants. X-ray fluorescence analyses of CAP chamber filters confirm contamination of AP exposures by multiple elements, including iron (Fe) and sulfur (S). Correspondingly, laser ablation inductively coupled plasma mass spectrometry of brains of male mice indicates marked postexposure elevations of Fe and S and other elements. Elevations of brain Fe and S in particular are consistent with potential ferroptotic, oxidative stress, and altered antioxidant capacity-based mechanisms of CAPs-induced neurotoxicity, supported by observations of increased serum oxidized glutathione and increased neuronal cell death in nucleus accumbens with no corresponding significant increase in caspase-3, in male brains following postnatal CAP exposures. Understanding the role of trace element contaminants of particulate matter AP as a source of neurotoxicity is critical for public health protection.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Encéfalo/efectos de los fármacos , Exposición por Inhalación/efectos adversos , Material Particulado/toxicidad , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Contaminantes Atmosféricos/química , Animales , Animales Recién Nacidos , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Encéfalo/patología , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Ratones Endogámicos C3H , Material Particulado/química , Embarazo , Caracteres Sexuales
9.
Part Fibre Toxicol ; 16(1): 45, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31771615

RESUMEN

BACKGROUND: A growing body of epidemiological literature indicates that particulate matter (PM) air pollution exposure is associated with elevated Alzheimer's disease (AD) risk and may exacerbate AD-related cognitive decline. Of concern is exposure to the ultrafine PM (UFP) fraction (≤100 nm), which deposits efficiently throughout the respiratory tract, has higher rates of translocation to secondary organs, like brain, and may induce inflammatory changes. We, therefore, hypothesize that exposure to UFPs will exacerbate cognitive deficits in a mouse model of AD. The present study assessed alterations in learning and memory behaviors in aged (12.5 months) male 3xTgAD and non-transgenic mice following a 2-week exposure (4-h/day, 4 days/week) to concentrated ambient UFPs using the Harvard ultrafine concentrated ambient particle system (HUCAPS) or filtered air. Beginning one month following exposure, locomotor activity, spatial learning and memory, short-term recognition memory, appetitive motivation, and olfactory discrimination were assessed. RESULTS: No effects on locomotor activity were found following HUCAPS exposure (number concentration, 1 × 104-4.7 × 105 particles/cm3; mass concentration, 29-132 µg/m3). HUCAPS-exposed mice, independent of AD background, showed a significantly decreased spatial learning, mediated through reference memory deficits, as well as short-term memory deficits in novel object recognition testing. AD mice displayed diminished spatial working memory, potentially a result of olfactory deficits, and short-term memory. AD background modulated HUCAPS-induced changes on appetitive motivation and olfactory discrimination, specifically enhancing olfactory discrimination in NTg mice. Modeling variation in appetitive motivation as a covariate in spatial learning and memory, however, did not support the conclusion that differences in motivation significantly underlie changes in spatial learning and memory. CONCLUSIONS: A short-term inhalation exposure of aged mice to ambient UFPs at human-relevant concentrations resulted in protracted (testing spanning 1-6.5 months post-exposure) adverse effects on multiple memory domains (reference and short-term memory) independent of AD background. Impairments in learning and memory were present when accounting for potential covariates like motivational changes and locomotor activity. These results highlight the need for further research into the potential mechanisms underlying the cognitive effects of UFP exposure in adulthood.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Enfermedad de Alzheimer/inducido químicamente , Conducta Animal/efectos de los fármacos , Memoria/efectos de los fármacos , Material Particulado/toxicidad , Enfermedad de Alzheimer/psicología , Animales , Modelos Animales de Enfermedad , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Tamaño de la Partícula , Reconocimiento en Psicología/efectos de los fármacos
10.
Part Fibre Toxicol ; 16(1): 10, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30777081

RESUMEN

BACKGROUND: Recent epidemiological studies indicate early-life exposure to air pollution is associated with adverse neurodevelopmental outcomes. Previous studies investigating neonatal exposure to ambient fine and ultrafine particles have shown sex specific inflammation-linked pathological changes and protracted learning deficits. A potential contributor to the adverse phenotypes from developmental exposure to particulate matter observed in previous studies may be elemental carbon, a well-known contributor to pollution particulate. The present study is an evaluation of pathological and protracted behavioral alterations in adulthood following subacute neonatal exposure to ultrafine elemental carbon. C57BL/6J mice were exposed to ultrafine elemental carbon at 50 µg/m3 from postnatal days 4-7 and 10-13 for 4 h/day. Behavioral outcomes measured were locomotor activity, novel object recognition (short-term memory), elevated plus maze (anxiety-like behavior), fixed interval (FI) schedule of food reward (learning, timing) and differential reinforcement of low rate (DRL) schedule of food reward (impulsivity, inability to inhibit responding). Neuropathology was assessed by measures of inflammation (glial fibrillary-acidic protein), myelin basic protein expression in the corpus callosum, and lateral ventricle area. RESULTS: Twenty-four hours following the final exposure day, no significant differences in anogenital distance, body weight or central nervous system pathological markers were observed in offspring of either sex. Nor were significant changes observed in novel object recognition, elevated plus maze performance, FI, or DRL schedule-controlled behavior in either females or males. CONCLUSION: The limited effect of neonatal exposure to ultrafine elemental carbon suggests this component of air pollution is not a substantial contributor to the behavioral alterations and neuropathology previously observed in response to ambient pollution particulate exposures. Rather, other more reactive constituent species, organic and/or inorganic, gas-phase components, or combinations of constituents may be involved. Defining these neurotoxic components is critical to the formulation of better animal models, more focused mechanistic assessments, and potential regulatory policies for air pollution.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Conducta Animal/efectos de los fármacos , Carbono/toxicidad , Sistema Nervioso Central/efectos de los fármacos , Exposición por Inhalación/efectos adversos , Nanopartículas/toxicidad , Animales , Animales Recién Nacidos , Biomarcadores/metabolismo , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Pulmón/efectos de los fármacos , Pulmón/crecimiento & desarrollo , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Tamaño de la Partícula
11.
Part Fibre Toxicol ; 16(1): 19, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31014371

RESUMEN

BACKGROUND: Particles and fibres affect human health as a function of their properties such as chemical composition, size and shape but also depending on complex interactions in an organism that occur at various levels between particle uptake and target organ responses. While particulate pollution is one of the leading contributors to the global burden of disease, particles are also increasingly used for medical purposes. Over the past decades we have gained considerable experience in how particle properties and particle-bio interactions are linked to human health. This insight is useful for improved risk management in the case of unwanted health effects but also for developing novel medical therapies. The concepts that help us better understand particles' and fibres' risks include the fate of particles in the body; exposure, dosimetry and dose-metrics and the 5 Bs: bioavailability, biopersistence, bioprocessing, biomodification and bioclearance of (nano)particles. This includes the role of the biomolecule corona, immunity and systemic responses, non-specific effects in the lungs and other body parts, particle effects and the developing body, and the link from the natural environment to human health. The importance of these different concepts for the human health risk depends not only on the properties of the particles and fibres, but is also strongly influenced by production, use and disposal scenarios. CONCLUSIONS: Lessons learned from the past can prove helpful for the future of the field, notably for understanding novel particles and fibres and for defining appropriate risk management and governance approaches.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Exposición por Inhalación/efectos adversos , Fibras Minerales/toxicidad , Nanopartículas/toxicidad , Material Particulado/toxicidad , Contaminantes Atmosféricos/química , Humanos , Nanopartículas/química , Tamaño de la Partícula , Material Particulado/química , Medición de Riesgo , Gestión de Riesgos , Propiedades de Superficie
12.
Part Fibre Toxicol ; 16(1): 2, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30616672

RESUMEN

BACKGROUND: Information on particle deposition, retention and clearance are important for the evaluation of the risk of inhaled nanomaterials to human health. Recent revised OECD inhalation toxicity test guidelines require to evaluate the lung burden of nanomaterials after rodent subacute and subchronic inhalation exposure (OECD 412, OECD 413). These revised test guidelines require additional post-exposure observation (PEO) periods that include lung burden measurements that can inform on lung clearance behavior and translocation. The latter being particularly relevant when the testing chemical is a solid poorly soluble nanomaterial. Therefore, in the spirit of 3 R's, we investigated whether measurement of retained lung burden of inhaled nanoparticles (NPs) in individual lung lobes is sufficient to determine retained lung burden in the total lung. If it is possible to use only one lobe, it will reduce animal use and maximize the number of endpoints evaluated. RESULTS: To achieve these goals, rats were exposed nose-only for 1 or 5 days (6 h/day) to an aerosol of 20 nm well-dispersed silver nanoparticles (AgNPs), which is the desired particle diameter resulting in maximum deposition in the pulmonary region when inhaled as singlets. After exposure, the five lung lobes were separated and silver concentration was measured using inductively coupled plasma-mass spectrophotometer (ICP-MS). The results showed that the retention of deposited silver nanoparticle in the different lung lobes did not show any statistically significant difference among lung lobes in terms of silver mass per gram lung lobe. This novel finding of evenness of retention/deposition of inhaled 20 nm NPs in rats for all five lobes in terms of mass per unit tissue weight contrasts with earlier studies reporting greater apical lobe deposition of inhaled micro-particles in rodents. The difference is most likely due to preferred and efficient deposition of inhaled NPs by diffusion vs. additional deposition by sedimentation and impaction for micron-sized particles. CONCLUSION: AgNPs following acute inhalation by rats are evenly retained in each lung lobe in terms of mass per unit lung tissue weight. Accordingly, we suggest sampling any of the rat lung lobes for lung burden analysis can be used to determine deposited or retained total lung burden after short-term inhalation of NPs and using the other lobes for collecting and analyzing bronchoalveolar lavage fluid (BALF) and for histopathological analysis. Therefore, by combining lung burden measurement, histopathological tissue preparation, and BALF assay in the same rat will reduce the number of animals used and maximize the number of endpoints measured.


Asunto(s)
Alternativas al Uso de Animales , Líquido del Lavado Bronquioalveolar/química , Determinación de Punto Final , Exposición por Inhalación/análisis , Pulmón , Nanopartículas del Metal/química , Plata/farmacocinética , Células Acinares/metabolismo , Células Acinares/patología , Animales , Biomarcadores/análisis , Carga Corporal (Radioterapia) , Líquido del Lavado Bronquioalveolar/citología , Exposición por Inhalación/efectos adversos , Pulmón/metabolismo , Pulmón/patología , Masculino , Tamaño de los Órganos/efectos de los fármacos , Ratas Sprague-Dawley , Plata/química , Distribución Tisular
13.
Part Fibre Toxicol ; 16(1): 26, 2019 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-31248442

RESUMEN

After the publication of this article [1] it was hihglighted that the number of deaths related to natural disasters was incorrectly reported in the second paragraph of the Hazards from Natural particulates and the evolution of the biosphere section. This correction article shows the correct and incorrect statement. This correction does not change the idea presented in the article that from an evolutionary view point, natural disasters account only for a small fraction of the people on the planet. The original article has been updated.

14.
Toxicol Appl Pharmacol ; 361: 50-61, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29751048

RESUMEN

Inhalation exposure to elongated cleavage fragments occurring at mineral and rock mining and crushing operations raises important questions regarding potential health effects given their resemblance to fibers with known adverse health effects like amphibole asbestos. Thus, a major goal for establishing a toxicity profile for elongate mineral particles (EMPs) is to identify and characterize a suspected hazard and characterize a risk by examining together results of hazard and exposure assessment. This will require not only knowledge about biokinetics of inhaled EMPs but also about underlying mechanisms of effects induced by retained EMPs. In vitro toxicity assays with predictive power for in vivo effects have been established as useful screening tools for toxicological characterization of particulate materials including EMPs. Important determinants of physiological/toxicological mechanisms are physico-chemical and functional properties of inhaled particulate materials. Of the physico-chemical (intrinsic) properties, size, shape and surface characteristics are well known to affect toxicological responses; functional properties include (i) solubility/dissolution rate in physiological fluid simulants in vitro and following inhalation in vivo; (ii) ROS-inducing capacity in vitro and in vivo determined as specific particle surface reactivity; (iii) bioprocessing in vivo. A key parameter for all is the dose and duration of exposure, requiring to establish exposure-dose-response relationships. Examples of studies with fibrous and non-fibrous particles are discussed to illustrate the relevancy of evaluating extrinsic and intrinsic particle properties for predicting in vivo responses of new particulate materials. This will allow hazard and risk ranking/grouping based on a comparison to toxicologically well-characterized positive and negative benchmarks. Future efforts should be directed at developing and validating new approaches using in vitro (non-animal) studies for establishing a complete risk assessment for EMPs. Further comparative in-depth analyses with analytical and ultra-high resolution technology examining bioprocessing events at target organ sites have proven highly successful to identify biotransformations in target cells at near atomic level. In the case of EMPs, such analyses can be essential to separate benign from harmful ones.


Asunto(s)
Contaminantes Ocupacionales del Aire/toxicidad , Minerales/toxicidad , Nanopartículas/toxicidad , Material Particulado/toxicidad , Humanos , Exposición por Inhalación , Fibras Minerales/toxicidad , Tamaño de la Partícula , Medición de Riesgo
15.
Toxicol Appl Pharmacol ; 361: 81-88, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30563646

RESUMEN

Human autopsied lung sections from a resident in the Quebec asbestos region were examined. The study utilized high resolution transmission electron microscopy, scanning transmission electron microscopy (HRTEM/STEM) with the analytical capabilities of electron energy loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) detectors. We report the first analytical ultrastructural characteristics of EMPs, detailing chemical concentration gradients inside the iron-protein coatings and lateral elemental gradients in the local tissue regions. It is shown that the EMPs are subjected to bioprocessing which involves physicochemical transformations and also an elemental transport mechanism that alters the inhaled EMP as well as the surrounding cellular matrix. At high resolution imaging the iron-rich coating around the EMP was observed to have a distinct channel-like nanostructure with some parallel aligned nanofibrils that are reminiscent of tooth enamel which consists of biomineralized nanocomposites with alternating organic/inorganic matrices.


Asunto(s)
Contaminantes Ocupacionales del Aire/toxicidad , Exposición por Inhalación/efectos adversos , Pulmón/metabolismo , Minerales/toxicidad , Material Particulado/toxicidad , Contaminantes Ocupacionales del Aire/metabolismo , Autopsia , Humanos , Pulmón/patología , Pulmón/ultraestructura , Microscopía Electrónica de Transmisión , Minerales/metabolismo , Nanopartículas/metabolismo , Nanopartículas/toxicidad , Material Particulado/metabolismo , Pleura/metabolismo , Fibrosis Pulmonar/patología , Espectrometría por Rayos X
16.
Adv Exp Med Biol ; 947: 71-100, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28168666

RESUMEN

Adverse human health impacts due to occupational and environmental exposures to manufactured nanoparticles are of concern and pose a potential threat to the continued industrial use and integration of nanomaterials into commercial products. This chapter addresses the inter-relationship between dose and response and will elucidate on how the dynamic chemical and physical transformation and breakdown of the nanoparticles at the cellular and subcellular levels can lead to the in vivo formation of new reaction products. The dose-response relationship is complicated by the continuous physicochemical transformations in the nanoparticles induced by the dynamics of the biological system, where dose, bio-processing, and response are related in a non-linear manner. Nanoscale alterations are monitored using high-resolution imaging combined with in situ elemental analysis and emphasis is placed on the importance of the precision of characterization. The result is an in-depth understanding of the starting particles, the particle transformation in a biological environment, and the physiological response.


Asunto(s)
Nanopartículas/efectos adversos , Nanopartículas/química , Ambiente , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Nanoestructuras/efectos adversos , Nanoestructuras/química
17.
Altern Lab Anim ; 45(3): 117-158, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28816053

RESUMEN

In 2009, the passing of the Family Smoking Prevention and Tobacco Control Act facilitated the establishment of the FDA Center for Tobacco Products (CTP), and gave it regulatory authority over the marketing, manufacture and distribution of tobacco products, including those termed 'modified risk'. On 4-6 April 2016, the Institute for In Vitro Sciences, Inc. (IIVS) convened a workshop conference entitled, In Vitro Exposure Systems and Dosimetry Assessment Tools for Inhaled Tobacco Products, to bring together stakeholders representing regulatory agencies, academia and industry to address the research priorities articulated by the FDA CTP. Specific topics were covered to assess the status of current in vitro smoke and aerosol/vapour exposure systems, as well as the various approaches and challenges to quantifying the complex exposures in in vitro pulmonary models developed for evaluating adverse pulmonary events resulting from tobacco product exposures. The four core topics covered were: a) Tobacco Smoke and E-Cigarette Aerosols; b) Air-Liquid Interface-In Vitro Exposure Systems; c) Dosimetry Approaches for Particles and Vapours/In Vitro Dosimetry Determinations; and d) Exposure Microenvironment/Physiology of Cells. The 2.5-day workshop included presentations from 20 expert speakers, poster sessions, networking discussions, and breakout sessions which identified key findings and provided recommendations to advance these technologies. Here, we will report on the proceedings, recommendations, and outcome of the April 2016 technical workshop, including paths forward for developing and validating non-animal test methods for tobacco product smoke and next generation tobacco product aerosol/vapour exposures. With the recent FDA publication of the final deeming rule for the governance of tobacco products, there is an unprecedented necessity to evaluate a very large number of tobacco-based products and ingredients. The questionable relevance, high cost, and ethical considerations for the use of in vivo testing methods highlight the necessity of robust in vitro approaches to elucidate tobacco-based exposures and how they may lead to pulmonary diseases that contribute to lung exposure-induced mortality worldwide.


Asunto(s)
Fumar/efectos adversos , Productos de Tabaco/efectos adversos , Pruebas de Toxicidad/métodos , Aerosoles , Animales , Sistemas Electrónicos de Liberación de Nicotina/efectos adversos , Humanos , Técnicas In Vitro , Especificidad de la Especie , Estados Unidos , United States Food and Drug Administration
18.
Part Fibre Toxicol ; 13(1): 59, 2016 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-27814761

RESUMEN

A recent publication in "Particle and Fibre Toxicology" reported on the gender differences in pulmonary toxicity from oro-pharyngeal aspiration of a high dose of cellulose nanocrystals. The study is timely given the growing interest in diverse commercial applications of cellulose nanomaterials, and the need for studies addressing pulmonary toxicity. The results from this study are interesting and can be strengthened with a discussion of how differences in the weights of female and male C57BL/6 mice was accounted for. Without such a discussion, the observed differences could be partially explained by the lower body weights of females, resulting in higher doses than males when standardized to body weight or lung volume. Further, few conclusions can be drawn about the pulmonary toxicity of cellulose nanocrystals given the study design: examination of a single high dose of cellulose nanocrystals, administered as a bolus, without positive or negative controls or low dose comparisons, and at an unphysiological and high dose rate. Simulating the bolus type delivery by inhalation would require a highly unrealistic exposure concentration in the g/m3 range of extremely short duration. A discussion of these limitations is missing in the paper; further speculative comparisons of cellulose nanocrystals toxicity to asbestos and carbon nanotubes in the abstract are both unwarranted and can be misleading, these materials were neither mentioned in the manuscript, nor evaluated in the study.


Asunto(s)
Celulosa , Nanotubos de Carbono , Animales , Pulmón , Ratones , Ratones Endogámicos C57BL , Nanopartículas
19.
J Aerosol Sci ; 99: 40-45, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27721518

RESUMEN

Dosimetric models are essential tools to refine inhalation risk assessments based on local respiratory effects. Dosimetric adjustments to account for differences in aerosol particle size and respiratory tract deposition and/or clearance among rodents, workers, and the general public can be applied to experimentally- and epidemiologically-determined points of departure (PODs) to calculate size-selected (e.g., PM10, inhalable aerosol fraction, respirable aerosol fraction) equivalent concentrations (e.g., HEC or Human Equivalent Concentration; REC or Rodent Equivalent Concentration). A modified POD (e.g., HEC) can then feed into existing frameworks for the derivation of occupational or ambient air concentration limits or reference concentrations. HECs that are expressed in terms of aerosol particle sizes experienced by humans but are derived from animal studies allow proper comparison of exposure levels and associated health effects in animals and humans. This can inform differences in responsiveness between animals and humans, based on the same deposited or retained doses and can also allow the use of both data sources in an integrated weight of evidence approach for hazard and risk assessment purposes. Whenever possible, default values should be replaced by substance-specific and target population-specific parameters. Assumptions and sources of uncertainty need to be clearly reported.

20.
J Toxicol Environ Health B Crit Rev ; 18(3-4): 121-212, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26361791

RESUMEN

Carbon nanotubes (CNT) and nanofibers (CNF) are used increasingly in a broad array of commercial products. Given current understandings, the most significant life-cycle exposures to CNT/CNF occur from inhalation when they become airborne at different stages of their life cycle, including workplace, use, and disposal. Increasing awareness of the importance of physicochemical properties as determinants of toxicity of CNT/CNF and existing difficulties in interpreting results of mostly acute rodent inhalation studies to date necessitate a reexamination of standardized inhalation testing guidelines. The current literature on pulmonary exposure to CNT/CNF and associated effects is summarized; recommendations and conclusions are provided that address test guideline modifications for rodent inhalation studies that will improve dosimetric extrapolation modeling for hazard and risk characterization based on the analysis of exposure-dose-response relationships. Several physicochemical parameters for CNT/CNF, including shape, state of agglomeration/aggregation, surface properties, impurities, and density, influence toxicity. This requires an evaluation of the correlation between structure and pulmonary responses. Inhalation, using whole-body exposures of rodents, is recommended for acute to chronic pulmonary exposure studies. Dry powder generator methods for producing CNT/CNF aerosols are preferred, and specific instrumentation to measure mass, particle size and number distribution, and morphology in the exposure chambers are identified. Methods are discussed for establishing experimental exposure concentrations that correlate with realistic human exposures, such that unrealistically high experimental concentrations need to be identified that induce effects under mechanisms that are not relevant for workplace exposures. Recommendations for anchoring data to results seen for positive and negative benchmark materials are included, as well as periods for postexposure observation. A minimum data set of specific bronchoalveolar lavage parameters is recommended. Retained lung burden data need to be gathered such that exposure-dose-response correlations may be analyzed and potency comparisons between materials and mammalian species are obtained considering dose metric parameters for interpretation of results. Finally, a list of research needs is presented to fill data gaps for further improving design, analysis, and interpretation and extrapolation of results of rodent inhalation studies to refine meaningful risk assessments for humans.


Asunto(s)
Nanofibras/toxicidad , Nanotubos de Carbono/toxicidad , Sistema Respiratorio/efectos de los fármacos , Aerosoles , Animales , Relación Dosis-Respuesta a Droga , Monitoreo del Ambiente , Humanos , Exposición por Inhalación , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA