Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Arch Med Res ; 33(3): 237-44, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12031627

RESUMEN

Water gain in the brain consequent to hyponatremia is counteracted by mechanisms that initially include a compensatory displacement of liquid from the interstitial space to cerebrospinal fluid and systemic circulation and subsequently an active reduction in cell water accomplished by extrusion of intracellular osmolytes to reach osmotic equilibrium. Potassium (K+), chloride (Cl-), amino acids, polyalcohols, and methylamines all contribute to volume regulation, with a major contribution of ions at the early phase and of organic osmolytes at the late phase of the regulatory process. Experimental models in vitro show that osmolyte fluxes occur via leak pathways for organic osmolytes and separate channels for Cl- and K+. Osmotransduction signaling cascades for Cl- and taurine efflux pathways involve tyrosine kinases and phosphoinositide kinases, while Ca2+ and serine-threonine kinases modulate K+ pathways. In-depth knowledge of the cellular and molecular adaptive mechanisms of brain cells during hyponatremia contributes to a better understanding of the associated complications, including the risks of inappropriate correction of the hyponatremic condition.


Asunto(s)
Edema Encefálico/fisiopatología , Hiponatremia/fisiopatología , Animales , Edema Encefálico/metabolismo , Hiponatremia/metabolismo , Transducción de Señal
2.
Neurochem Res ; 29(1): 65-72, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14992264

RESUMEN

A decrease in external osmolarity results in cell swelling and the immediate activation of a mechanism to restore cell volume, known as regulatory volume decrease (RVD). When exposed to a gradual osmolarity decrease (GODE), some cells do not swell. This reflects the operation of an active regulatory process known as isovolumetric regulation (IVR). The mechanisms underlying IVR appear similar to those activated during RVD, namely the extrusion of K+, Cl-, amino acids, and other organic molecules. A previous study has documented IVR in cerebellar granule neurons, parallel to an early efflux of taurine and Cl-, whereas K+ efflux is delayed. In this work we briefly review the importance of amino acids in the mechanisms of cell volume control in the brain, with emphasis on IVR. We also present experiments showing the response to GODE in cerebellar astrocytes. The currents activated during GODE, recorded in the whole-cell configuration of the patch clamp technique, indicate the early activation of an anion current, followed by a more delayed cation current. A correlation between the time course of amino acid efflux during GODE and the occurrence or not of IVR in various cell types, suggest the importance of these osmolytes in the volume regulatory process in this model.


Asunto(s)
Tamaño de la Célula , Concentración Osmolar , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA