Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 96(6): e0192921, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35080425

RESUMEN

The HIV-1 Nef and Vpu accessory proteins are known to protect infected cells from antibody-dependent cellular cytotoxicity (ADCC) responses by limiting exposure of CD4-induced (CD4i) envelope (Env) epitopes at the cell surface. Although both proteins target the host receptor CD4 for degradation, the extent of their functional redundancy is unknown. Here, we developed an intracellular staining technique that permits the intracellular detection of both Nef and Vpu in primary CD4+ T cells by flow cytometry. Using this method, we show that the combined expression of Nef and Vpu predicts the susceptibility of HIV-1-infected primary CD4+ T cells to ADCC by HIV+ plasma. We also show that Vpu cannot compensate for the absence of Nef, thus providing an explanation for why some infectious molecular clones that carry a LucR reporter gene upstream of Nef render infected cells more susceptible to ADCC responses. Our method thus represents a new tool to dissect the biological activity of Nef and Vpu in the context of other host and viral proteins within single infected CD4+ T cells. IMPORTANCE HIV-1 Nef and Vpu exert several biological functions that are important for viral immune evasion, release, and replication. Here, we developed a new method allowing simultaneous detection of these accessory proteins in their native form together with some of their cellular substrates. This allowed us to show that Vpu cannot compensate for the lack of a functional Nef, which has implications for studies that use Nef-defective viruses to study ADCC responses.


Asunto(s)
Linfocitos T CD4-Positivos , Infecciones por VIH , VIH-1 , Proteínas del Virus de la Inmunodeficiencia Humana , Proteínas Reguladoras y Accesorias Virales , Proteínas Viroporinas , Productos del Gen nef del Virus de la Inmunodeficiencia Humana , Citotoxicidad Celular Dependiente de Anticuerpos/fisiología , Antígenos CD4/metabolismo , Linfocitos T CD4-Positivos/virología , Citometría de Flujo , Infecciones por VIH/fisiopatología , VIH-1/genética , VIH-1/metabolismo , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Proteínas del Virus de la Inmunodeficiencia Humana/aislamiento & purificación , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Humanos , Proteínas Reguladoras y Accesorias Virales/genética , Proteínas Reguladoras y Accesorias Virales/aislamiento & purificación , Proteínas Reguladoras y Accesorias Virales/metabolismo , Proteínas Viroporinas/genética , Proteínas Viroporinas/aislamiento & purificación , Proteínas Viroporinas/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/aislamiento & purificación , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo
2.
J Virol ; 96(2): e0164321, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34730393

RESUMEN

Antibody-dependent cellular cytotoxicity (ADCC) has been correlated with reduced risk of human immunodeficiency virus type 1 (HIV-1) infection in several preclinical vaccine trials and in the RV144 clinical trial, indicating that this is a relevant antibody function to study. Given the diversity of HIV-1, the breadth of vaccine-induced antibody responses is a critical parameter to understand if a universal vaccine is to be realized. Moreover, the breadth of ADCC responses can be influenced by different vaccine strategies and regimens, including adjuvants. Therefore, to accurately evaluate ADCC and to compare vaccine regimens, it is important to understand the range of HIV Envelope (Env) susceptibility to these responses. These evaluations have been limited because of the complexity of the assay and the lack of a comprehensive panel of viruses for the assessment of these humoral responses. Here, we used 29 HIV-1 infectious molecular clones (IMCs) representing different Envelope subtypes and circulating recombinant forms to characterize susceptibility to ADCC from antibodies in plasma from infected individuals, including 13 viremic individuals, 10 controllers, and six with broadly neutralizing antibody responses. We found in our panel that ADCC susceptibility of the IMCs in our panel did not cluster by subtype, infectivity, level of CD4 downregulation, level of shedding, or neutralization sensitivity. Using partitioning around medoids (PAM) clustering to distinguish smaller groups of IMCs with similar ADCC susceptibility, we identified nested panels of four to eight IMCs that broadly represent the ADCC susceptibility of the entire 29-IMC panel. These panels, together with reagents developed to specifically accommodate circulating viruses at the geographical sites of vaccine trials, will provide a powerful tool to harmonize ADCC data generated across different studies and to detect common themes of ADCC responses elicited by various vaccines. IMPORTANCE Antibody-dependent cellular cytotoxicity (ADCC) responses were found to correlate with reduced risk of infection in the RV144 trial of the only human HIV-1 vaccine to show any efficacy to date. However, reagents to understand the breadth and magnitude of these responses across preclinical and clinical vaccine trials remain underdeveloped. In this study, we characterize HIV-1 infectious molecular clones encoding 29 distinct Envelope strains (Env-IMCs) to understand factors that impact virus susceptibility to ADCC and use statistical methods to identify smaller nested panels of four to eight Env-IMCs that accurately represent the full set. These reagents can be used as standardized reagents across studies to fully understand how ADCC may affect efficacy of future vaccine studies and how studies differ in the breadth of responses developed.


Asunto(s)
Vacunas contra el SIDA/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Vacunas contra el SIDA/normas , Anticuerpos Neutralizantes , Variación Genética , Anticuerpos Anti-VIH/sangre , Infecciones por VIH/sangre , VIH-1/clasificación , VIH-1/genética , Humanos , Pruebas de Neutralización/normas , Filogenia , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
3.
PLoS Pathog ; 17(11): e1010046, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34788337

RESUMEN

Despite antibody-dependent cellular cytotoxicity (ADCC) responses being implicated in protection from HIV-1 infection, there is limited evidence that they control virus replication. The high mutability of HIV-1 enables the virus to rapidly adapt, and thus evidence of viral escape is a very sensitive approach to demonstrate the importance of this response. To enable us to deconvolute ADCC escape from neutralizing antibody (nAb) escape, we identified individuals soon after infection with detectable ADCC responses, but no nAb responses. We evaluated the kinetics of ADCC and nAb responses, and viral escape, in five recently HIV-1-infected individuals. In one individual we detected viruses that escaped from ADCC responses but were sensitive to nAbs. In the remaining four participants, we did not find evidence of viral evolution exclusively associated with ADCC-mediating non-neutralizing Abs (nnAbs). However, in all individuals escape from nAbs was rapid, occurred at very low titers, and in three of five cases we found evidence of viral escape before detectable nAb responses. These data show that ADCC-mediating nnAbs can drive immune escape in early infection, but that nAbs were far more effective. This suggests that if ADCC responses have a protective role, their impact is limited after systemic virus dissemination.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Linfocitos T CD4-Positivos/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Evasión Inmune , Infecciones por VIH/virología , Humanos , Estudios Prospectivos , Replicación Viral
4.
Retrovirology ; 19(1): 15, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35804422

RESUMEN

BACKGROUND: Innate immunity and type 1 interferon (IFN) defenses are critical for early control of HIV infection within CD4 + T cells. Despite these defenses, some acutely infected cells silence viral transcription to become latently infected and form the HIV reservoir in vivo. Latently infected cells persist through antiretroviral therapy (ART) and are a major barrier to HIV cure. Here, we evaluated innate immunity and IFN responses in multiple T cell models of HIV latency, including established latent cell lines, Jurkat cells latently infected with a reporter virus, and a primary CD4 + T cell model of virologic suppression. RESULTS: We found that while latently infected T cell lines have functional RNA sensing and IFN signaling pathways, they fail to induce specific interferon-stimulated genes (ISGs) in response to innate immune activation or type 1 IFN treatment. Jurkat cells latently infected with a fluorescent reporter HIV similarly demonstrate attenuated responses to type 1 IFN. Using bulk and single-cell RNA sequencing we applied a functional genomics approach and define ISG expression dynamics in latent HIV infection, including HIV-infected ART-suppressed primary CD4 + T cells. CONCLUSIONS: Our observations indicate that HIV latency and viral suppression each link with cell-intrinsic defects in specific ISG induction. We identify a set of ISGs for consideration as latency restriction factors whose expression and function could possibly mitigate establishing latent HIV infection.


Asunto(s)
Infecciones por VIH , Interferón Tipo I , Antivirales , Linfocitos T CD4-Positivos , Humanos , Inmunidad Innata , Interferón Tipo I/metabolismo , Latencia del Virus
5.
J Virol ; 95(16): e0016021, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34076482

RESUMEN

HIV frequently escapes CD8 T cell responses, leading to the accumulation of viral adaptations. We recently demonstrated that during chronic HIV infection, adapted epitopes can promote maturation of dendritic cells (DCs) through direct CD8 T cell interactions and lead to enhanced HIV trans-infection of CD4 T cells. Here, we sought to determine the role of such adaptations following HIV MRKAd5 vaccination. We observed that vaccine-induced adapted epitope-specific CD8 T cells promoted higher levels of DC maturation than nonadapted ones and that these matured DCs significantly enhanced HIV trans-infection. These matured DCs were associated with higher levels of interleukin 5 (IL-5) and IL-13 and a lower level of CXCL5, which have been shown to impact DC maturation, as well as a lower level of CXCL16. Finally, we observed that vaccine recipients with high HLA-I-associated adaptation became HIV infected more quickly. Our results offer another possible mechanism for enhanced infection among MRKAd5 vaccinees. IMPORTANCE Despite the well-established contribution of CD8 T cells in HIV control, prior CD8 T cell-based HIV vaccines have failed to demonstrate any efficacy in preventing viral infection. One such vaccine, known as the MRKAd5 vaccine, showed a potential increased risk of viral infection among vaccine recipients. However, the underlying mechanism(s) remains unclear. In this study, we observed that vaccine recipients with high adaptation to their HLA-I alleles were associated with an increased HIV infection risk in comparison to the others. Similar to what we observed in HIV infection in the prior study, adapted epitope-specific CD8 T cells obtained from vaccine recipients exhibit a greater capacity in facilitating viral infection by promoting dendritic cell maturation. Our findings provide a possible explanation for the enhanced viral acquisition risk among MRKAd5 vaccine recipients and highlight the importance of optimizing vaccine design with consideration of HLA-I-associated HIV adaptation.


Asunto(s)
Vacunas contra el SIDA/inmunología , Adaptación Fisiológica/inmunología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Adulto , Alelos , Citocinas/metabolismo , Células Dendríticas/inmunología , Infecciones por VIH/prevención & control , Infecciones por VIH/virología , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Estimación de Kaplan-Meier , Masculino , Carga Viral , Adulto Joven
6.
PLoS Pathog ; 15(12): e1008161, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31805155

RESUMEN

Non-invasive bioluminescent imaging (NIBLI) of HIV-1 infection dynamics allows for real-time monitoring of viral spread and the localization of infected cell populations in living animals. In this report, we describe full-length replication-competent GFP and Nanoluciferase (Nluc) expressing HIV-1 reporter viruses from two clinical transmitted / founder (T/F) strains: TRJO.c and Q23.BG505. By infecting humanized mice with these HIV-1 T/F reporter viruses, we were able to directly monitor longitudinal viral spread at whole-animal resolution via NIBLI at a sensitivity of as few as 30-50 infected cells. Bioluminescent signal strongly correlated with HIV-1 infection and responded proportionally to virus suppression in vivo in animals treated daily with a combination antiretroviral therapy (cART) regimen. Longitudinal NIBLI following cART withdrawal visualized tissue-sites that harbored virus during infection recrudescence. Notably, we observed rebounding infection in the same lymphoid tissues where infection was first observed prior to ART treatment. Our work demonstrates the utility of our system for studying in vivo viral infection dynamics and identifying infected tissue regions for subsequent analyses.


Asunto(s)
Fármacos Anti-VIH/farmacología , Modelos Animales de Enfermedad , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , Mediciones Luminiscentes/métodos , Animales , Infecciones por VIH/tratamiento farmacológico , Humanos , Tejido Linfoide/efectos de los fármacos , Tejido Linfoide/virología , Ratones , Replicación Viral/efectos de los fármacos
7.
J Virol ; 93(20)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31375574

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) has evolved elaborate ways to evade immune cell recognition, including downregulation of classical HLA class I (HLA-I) from the surfaces of infected cells. Recent evidence identified HLA-E, a nonclassical HLA-I, as an important part of the antiviral immune response to HIV-1. Changes in HLA-E surface levels and peptide presentation can prompt both CD8+ T-cell and natural killer (NK) cell responses to viral infections. Previous studies reported unchanged or increased HLA-E levels on HIV-1-infected cells. Here, we examined HLA-E surface levels following infection of CD4+ T cells with primary HIV-1 strains and observed that a subset downregulated HLA-E. Two primary strains of HIV-1 that induced the strongest reduction in surface HLA-E expression were chosen for further testing. Expression of single Nef or Vpu proteins in a T-cell line, as well as tail swap experiments exchanging the cytoplasmic tail of HLA-A2 with that of HLA-E, demonstrated that Nef modulated HLA-E surface levels and targeted the cytoplasmic tail of HLA-E. Furthermore, infection of primary CD4+ T cells with HIV-1 mutants showed that a lack of functional Nef (and Vpu to some extent) impaired HLA-E downmodulation. Taken together, the results of this study demonstrate for the first time that HIV-1 can downregulate HLA-E surface levels on infected primary CD4+ T cells, potentially rendering them less vulnerable to CD8+ T-cell recognition but at increased risk of NKG2A+ NK cell killing.IMPORTANCE For almost two decades, it was thought that HIV-1 selectively downregulated the highly expressed HLA-I molecules HLA-A and HLA-B from the cell surface in order to evade cytotoxic-T-cell recognition, while leaving HLA-C and HLA-E molecules unaltered. It was stipulated that HIV-1 infection thereby maintained inhibition of NK cells via inhibitory receptors that bind HLA-C and HLA-E. This concept was recently revised when a study showed that primary HIV-1 strains reduce HLA-C surface levels, whereas the cell line-adapted HIV-1 strain NL4-3 lacks this ability. Here, we demonstrate that infection with distinct primary HIV-1 strains results in significant downregulation of surface HLA-E levels. Given the increasing evidence for HLA-E as an important modulator of CD8+ T-cell and NKG2A+ NK cell functions, this finding has substantial implications for future immunomodulatory approaches aimed at harnessing cytotoxic cellular immunity against HIV.


Asunto(s)
Regulación de la Expresión Génica , Infecciones por VIH/genética , Infecciones por VIH/virología , VIH-1/fisiología , Antígenos de Histocompatibilidad Clase I/genética , Interacciones Huésped-Patógeno/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Biomarcadores , Recuento de Linfocito CD4 , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Línea Celular , Membrana Celular/metabolismo , Infecciones por VIH/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunofenotipificación , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Antígenos HLA-E
8.
J Virol ; 92(13)2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29669829

RESUMEN

HIV-1-infected cells expressing envelope glycoproteins (Env) in the CD4-bound conformation on their surfaces are targeted by antibody-dependent cellular cytotoxicity (ADCC) mediated by CD4-induced (CD4i) antibodies and sera from HIV-1-infected individuals (HIV+ sera). By downregulating the surface expression of CD4, Nef prevents Env-CD4 interaction, thus protecting HIV-1-infected cells from ADCC. HIV-1 infectious molecular clones (IMCs) are widely used to measure ADCC. In order to facilitate the identification of infected cells and high-throughput ADCC analysis, reporter genes (e.g., the Renilla luciferase [LucR] gene) are often introduced into IMC constructs. We evaluated the susceptibility of HIV-1-infected CD4+ T lymphocytes to ADCC using a panel of parental IMCs and derivatives that expressed the LucR reporter gene, utilizing different molecular strategies, including one specifically designed to retain Nef expression. We found that in some of these constructs, Nef expression in CD4+ T cells was suboptimal, and consequently, CD4 downregulation was incomplete. CD4 molecules remaining on the cell surface resulted in the exposure of ADCC-mediating CD4i epitopes on Env and a dramatic increase in the susceptibility of the infected cells to ADCC. Strikingly, protection from ADCC was observed when cells were infected with the parental IMC, which exhibited strong CD4 downregulation. This discrepancy between the parental and Nef-impaired viruses was independent of the strains of Env expressed, but rather, it was correlated with the levels of CD4 surface expression. Overall, our results indicate that caution should be taken when selecting IMCs for ADCC measurements and that CD4 downregulation needs to be carefully monitored when drawing conclusions about the nature and magnitude of ADCC.IMPORTANCE In-depth understanding of the susceptibility of HIV-1-infected cells to ADCC might help establish correlates of vaccine protection and guide the development of HIV-1 vaccine strategies. Different ADCC assays have been developed, including those using infectious molecular clones (IMCs) carrying a LucR reporter gene that greatly facilitates large-scale quantitative analysis. We previously reported different molecular strategies for introducing LucR while maintaining Nef expression and function and, consequently, CD4 surface downregulation. Here, we demonstrate that utilizing IMCs that exhibit impaired Nef expression can have undesirable consequences due to incomplete CD4 downregulation. CD4 molecules remaining on the cell surface resulted in the exposure of ADCC-mediating CD4i epitopes on Env and a dramatic increase in the susceptibility of the infected cells to ADCC. Overall, our results indicate that CD4 downregulation needs to be carefully monitored when drawing conclusions about the nature and magnitude of ADCC.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Antígenos CD4/antagonistas & inhibidores , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Antígenos CD4/metabolismo , Linfocitos T CD4-Positivos/inmunología , Regulación hacia Abajo , Epítopos/inmunología , Células HEK293 , Infecciones por VIH/virología , Humanos , Luciferasas de Renilla/metabolismo , Unión Proteica , Conformación Proteica , Productos del Gen nef del Virus de la Inmunodeficiencia Humana
9.
PLoS Pathog ; 13(2): e1006226, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28241075

RESUMEN

Global transcriptome studies can help pinpoint key cellular pathways exploited by viruses to replicate and cause pathogenesis. Previous data showed that laboratory-adapted HIV-1 triggers significant gene expression changes in CD4+ T cell lines and mitogen-activated CD4+ T cells from peripheral blood. However, HIV-1 primarily targets mucosal compartments during acute infection in vivo. Moreover, early HIV-1 infection causes extensive depletion of CD4+ T cells in the gastrointestinal tract that herald persistent inflammation due to the translocation of enteric microbes to the systemic circulation. Here, we profiled the transcriptome of primary intestinal CD4+ T cells infected ex vivo with transmitted/founder (TF) HIV-1. Infections were performed in the presence or absence of Prevotella stercorea, a gut microbe enriched in the mucosa of HIV-1-infected individuals that enhanced both TF HIV-1 replication and CD4+ T cell death ex vivo. In the absence of bacteria, HIV-1 triggered a cellular shutdown response involving the downregulation of HIV-1 reactome genes, while perturbing genes linked to OX40, PPAR and FOXO3 signaling. However, in the presence of bacteria, HIV-1 did not perturb these gene sets or pathways. Instead, HIV-1 enhanced granzyme expression and Th17 cell function, inhibited G1/S cell cycle checkpoint genes and triggered downstream cell death pathways in microbe-exposed gut CD4+ T cells. To gain insights on these differential effects, we profiled the gene expression landscape of HIV-1-uninfected gut CD4+ T cells exposed to bacteria. Microbial exposure upregulated genes involved in cellular proliferation, MAPK activation, Th17 cell differentiation and type I interferon signaling. Our findings reveal that microbial exposure influenced how HIV-1 altered the gut CD4+ T cell transcriptome, with potential consequences for HIV-1 susceptibility, cell survival and inflammation. The HIV-1- and microbe-altered pathways unraveled here may serve as a molecular blueprint to gain basic insights in mucosal HIV-1 pathogenesis.


Asunto(s)
Linfocitos T CD4-Positivos/microbiología , Enterobacteriaceae , Infecciones por VIH/microbiología , VIH-1/patogenicidad , Intestinos/microbiología , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Transcriptoma
10.
PLoS Pathog ; 13(2): e1006163, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28207890

RESUMEN

Understanding early events of HIV transmission within mucosal tissues is vital for developing effective prevention strategies. Here, we report that primary stromal fibroblasts isolated from endometrium, cervix, foreskin, male urethra, and intestines significantly increase HIV infection of CD4+ T cells-by up to 37-fold for R5-tropic HIV and 100-fold for X4-tropic HIV-without themselves becoming infected. Fibroblasts were more efficient than dendritic cells at trans-infection and mediate this response in the absence of the DC-SIGN and Siglec-1 receptors. In comparison, mucosal epithelial cells secrete antivirals and inhibit HIV infection. These data suggest that breaches in the epithelium allow external or luminal HIV to escape an antiviral environment to access the infection-favorable environment of the stromal fibroblasts, and suggest that resident fibroblasts have a central, but previously unrecognized, role in HIV acquisition at mucosal sites. Inhibiting fibroblast-mediated enhancement of HIV infection should be considered as a novel prevention strategy.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Fibroblastos/citología , Infecciones por VIH/transmisión , VIH-1/patogenicidad , Membrana Mucosa/virología , Técnicas de Cocultivo , Endometrio/citología , Endometrio/virología , Femenino , Citometría de Flujo , Prepucio/citología , Prepucio/virología , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/virología , Masculino , Membrana Mucosa/citología , Análisis de Secuencia por Matrices de Oligonucleótidos , Uretra/citología , Uretra/virología
11.
J Virol ; 91(20)2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28794022

RESUMEN

Antibodies bound to human immunodeficiency virus type 1 (HIV-1) envelope protein expressed by infected cells mobilize antibody-dependent cellular cytotoxicity (ADCC) to eliminate the HIV-1-infected cells and thereby suppress HIV-1 infection and delay disease progression. Studies treating HIV-1-infected individuals with latency reactivation agents to reduce their latent HIV-1 reservoirs indicated that their HIV-1-specific immune responses were insufficient to effectively eliminate the reactivated latent HIV-1-infected T cells. Mobilization of ADCC may facilitate elimination of reactivated latent HIV-1-infected cells to deplete the HIV-1 reservoir and contribute to a functional HIV-1 cure. The most effective antibodies for controlling and eradicating HIV-1 infection would likely have the dual capacities of potently neutralizing a broad range of HIV-1 isolates and effectively mobilizing HIV-1-specific ADCC to eliminate HIV-1-infected cells. For this purpose, we constructed LSEVh-LS-F, a broadly neutralizing, defucosylated hexavalent fusion protein specific for both the CD4 and coreceptor gp120-binding sites. LSEVh-LS-F potently inhibited in vivo HIV-1 and simian-human immunodeficiency virus (SHIV) infection in humanized mouse and macaque models, respectively, including in vivo neutralization of HIV-1 strains resistant to the broadly neutralizing antibodies VRC01 and 3BNC117. We developed a novel humanized mouse model to evaluate in vivo human NK cell-mediated elimination of HIV-1-infected cells by ADCC and utilized it to demonstrate that LSEVh-LS-F rapidly mobilized NK cells to eliminate >80% of HIV-1-infected cells in vivo 1 day after its administration. The capacity of LSEVh-LS-F to eliminate HIV-1-infected cells via ADCC combined with its broad neutralization activity supports its potential use as an immunotherapeutic agent to eliminate reactivated latent cells and deplete the HIV-1 reservoir.IMPORTANCE Mobilization of antibody-dependent cellular cytotoxicity (ADCC) to eliminate reactivated latent HIV-1-infected cells is a strategy which may contribute to depleting the HIV-1 reservoir and achieving a functional HIV-1 cure. To more effectively mobilize ADCC, we designed and constructed LSEVh-LS-F, a broadly neutralizing, defucosylated hexavalent fusion protein specific for both the CD4 and coreceptor gp120-binding sites. LSEVh-LS-F potently inhibited in vivo HIV-1 and SHIV infection in humanized mouse and macaque models, respectively, including in vivo neutralization of an HIV-1 strain resistant to the broadly neutralizing antibodies VRC01 and 3BNC117. Using a novel humanized mouse model, we demonstrated that LSEVh-LS-F rapidly mobilized NK cells to eliminate >80% of HIV-1-infected cells in vivo 1 day after its administration. The capacity of LSEVh-LS-F to eliminate HIV-1-infected cells via ADCC combined with its broad neutralization activity supports its potential use as an immunotherapeutic agent to eliminate reactivated latent cells and deplete the HIV-1 reservoir.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Infecciones por VIH/inmunología , VIH-1/fisiología , Células Asesinas Naturales/inmunología , Leucocitos Mononucleares/virología , Animales , Anticuerpos Biespecíficos/inmunología , Antígenos CD4/inmunología , Modelos Animales de Enfermedad , Proteína gp120 de Envoltorio del VIH/química , Infecciones por VIH/virología , VIH-1/aislamiento & purificación , Macaca mulatta , Ratones , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/inmunología , Latencia del Virus
12.
J Virol ; 90(11): 5315-5328, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27009957

RESUMEN

UNLABELLED: Although vaccines and antiretroviral (ARV) prevention have demonstrated partial success against human immunodeficiency virus (HIV) infection in clinical trials, their combined introduction could provide more potent protection. Furthermore, combination approaches could ameliorate the potential increased risk of infection following vaccination in the absence of protective immunity. We used a nonhuman primate model to determine potential interactions of combining a partially effective ARV microbicide with an envelope-based vaccine. The vaccine alone provided no protection from infection following 12 consecutive low-dose intravaginal challenges with simian-HIV strain SF162P3, with more animals infected compared to naive controls. The microbicide alone provided a 68% reduction in the risk of infection relative to that of the vaccine group and a 45% reduction relative to that of naive controls. The vaccine-microbicide combination provided an 88% reduction in the per-exposure risk of infection relative to the vaccine alone and a 79% reduction relative to that of the controls. Protected animals in the vaccine-microbicide group were challenged a further 12 times in the absence of microbicide and demonstrated a 98% reduction in the risk of infection. A total risk reduction of 91% was observed in this group over 24 exposures (P = 0.004). These important findings suggest that combined implementation of new biomedical prevention strategies may provide significant gains in HIV prevention. IMPORTANCE: There is a pressing need to maximize the impact of new biomedical prevention tools in the face of the 2 million HIV infections that occur each year. Combined implementation of complementary biomedical approaches could create additive or synergistic effects that drive improved reduction of HIV incidence. Therefore, we assessed a combination of an untested vaccine with an ARV-based microbicide in a nonhuman primate vaginal challenge model. The vaccine alone provided no protection (and may have increased susceptibility to a simian-HIV vaginal challenge), while the microbicide reduced the infection risk compared to that of vaccinated and naive animals. Importantly, the combined interventions provided the greatest level of protection, which was sustained following withdrawal of the microbicide. The data suggest that provision of ARV prophylaxis during vaccination reduces the potential for unexpected increased risks of infection following immunization and augments vaccine efficacy. These findings are important for the potential adoption of ARV prophylaxis as the baseline intervention for future HIV/AIDS vaccines.


Asunto(s)
Vacunas contra el SIDA/inmunología , Fármacos Anti-VIH/administración & dosificación , Infecciones por VIH/prevención & control , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Virus de la Inmunodeficiencia de los Simios/inmunología , Tenofovir/administración & dosificación , Vacunas contra el SIDA/administración & dosificación , Animales , Anticuerpos Antivirales/sangre , Sinergismo Farmacológico , Femenino , Anticuerpos Anti-VIH/sangre , Infecciones por VIH/virología , VIH-1/inmunología , Humanos , Macaca fascicularis , Modelos Animales , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Virus de la Inmunodeficiencia de los Simios/aislamiento & purificación , Vacunación
13.
J Virol ; 90(19): 8795-808, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27466415

RESUMEN

UNLABELLED: Unlike human immunodeficiency virus type 1 (HIV-1)-infected humans, African-origin, natural simian immunodeficiency virus (SIV) hosts, such as African green monkeys (AGMs), sustain nonpathogenic SIV infections and rarely vertically transmit SIV to their infants. Interestingly, chronically SIV-infected AGMs have anatomically compartmentalized SIV variants in plasma and milk, whereas humans and SIV-infected rhesus monkeys (RMs), Asian-origin nonnatural SIV hosts, do not exhibit this compartmentalization. Thus, it is possible that AGM SIV populations in milk have unique phenotypic features that contribute to the low postnatal transmission rates observed in this natural host species. In this study, we explored this possibility by characterizing the infectivity, tropism, and neutralization susceptibility of plasma and milk SIVsab env variants isolated from chronically SIVsab92018ivTF-infected AGMs. AGM plasma and milk SIVsab env pseudovirus variants exhibited similar infectivities, neutralization susceptibilities to autologous and heterologous plasma, and chemokine coreceptor usages for cell entry, suggesting similar abilities to initiate infection in a new host. We also assessed the cytokine milieu in SIV-infected AGM milk and compared it to that of SIV-infected RMs. MIP-1ß, granulocyte colony-stimulating factor (G-CSF), interleukin-12/23 (IL-12/23), and IL-13 trended significantly higher in SIV-infected AGM milk than in that of RMs, while IL-18 and IL-6 trended significantly higher in SIV-infected RM milk than in that of AGMs. Taken together, our findings imply that nonviral maternal factors, such as the cytokine milieu, rather than unique characteristics of SIV populations in the milk contribute to the low postnatal transmission rates observed in AGMs. IMPORTANCE: Due to the ongoing global incidence of pediatric HIV-1 infections, including many that occur via breastfeeding, development of effective vaccine strategies capable of preventing vertical HIV transmission through breastfeeding remains an important goal. Unlike HIV-1-infected humans, African green monkeys (AGMs), the natural SIV host species, sustain nonpathogenic SIV infections, rarely transmit the virus postnatally to their infants, and exhibit anatomically compartmentalized SIV populations in milk and plasma. Identifying unique features of the anatomically compartmentalized milk SIV populations could enhance our understanding of how AGMs may have evolved to avoid transmission through breastfeeding. While this study identified limited phenotypic distinctions between AGM plasma and milk SIV populations, potential differences in milk cytokine profiles of natural and nonnatural SIV hosts were observed. These findings imply the potential importance of nonviral factors in natural SIV host species, such as innate SIV/HIV immune factors in milk, as a means of naturally preventing vertical transmission.


Asunto(s)
Chlorocebus aethiops , Leche/virología , Plasma/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/aislamiento & purificación , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Citocinas/análisis , Leche/química , Virus de la Inmunodeficiencia de los Simios/inmunología , Virus de la Inmunodeficiencia de los Simios/fisiología , Tropismo Viral , Internalización del Virus
14.
J Virol ; 89(18): 9559-70, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26157126

RESUMEN

UNLABELLED: Epidemiological studies have demonstrated that herpes simplex virus 2 (HSV-2) infection significantly increases the risk of HIV-1 acquisition, thereby contributing to the expanding HIV-1 epidemic. To investigate whether HSV-2 infection directly facilitates mucosal HIV-1 acquisition, we used our transgenic hCD4/R5/cT1 mouse model which circumvents major entry and transcription blocks preventing murine HIV-1 infection by targeting transgenic expression of human CD4, CCR5, and cyclin T1 genes to CD4(+) T cells and myeloid-committed cells. Productive infection of mucosal leukocytes, predominantly CD4(+) T cells, was detected in all hCD4/R5/cT1 mice intravaginally challenged with an HIV-1 infectious molecular clone, HIV-Du151.2env-NLuc, which expresses an env gene (C.Du151.2) cloned from an acute heterosexually infected woman and a NanoLuc luciferase reporter gene. Lower genital tract HIV-1 infection after HIV-Du151.2env-NLuc intravaginal challenge was increased ~4-fold in hCD4/R5/cT1 mice coinfected with HSV-2. Furthermore, HIV-1 dissemination to draining lymph nodes was detected only in HSV-2-coinfected mice. HSV-2 infection stimulated local infiltration and activation of CD4(+) T cells and dendritic cells, likely contributing to the enhanced HIV-1 infection and dissemination in HSV-2-coinfected mice. We then used this model to demonstrate that a novel gel containing tenofovir disoproxil fumarate (TDF), the more potent prodrug of tenofovir (TFV), but not the TFV microbicide gel utilized in the recent CAPRISA 004, VOICE (Vaginal and Oral Interventions to Control the Epidemic), and FACTS 001 clinical trials, was effective as preexposure prophylaxis (PrEP) to completely prevent vaginal HIV-1 infection in almost half of HSV-2-coinfected mice. These results also support utilization of hCD4/R5/cT1 mice as a highly reproducible immunocompetent preclinical model to evaluate HIV-1 acquisition across the female genital tract. IMPORTANCE: Multiple epidemiological studies have reported that genital herpes simplex virus 2 (HSV-2) infection increases the risk of HIV-1 sexual acquisition by severalfold. Understanding the underlying mechanisms by which HSV-2 facilitates HIV-1 infection and optimizing the efficacy of therapies to inhibit HIV-1 infection during HSV-2 coinfection should contribute to reducing HIV-1 transmission. Using our novel transgenic hCD4/R5/cT1 mouse model infectible with HIV-1, we demonstrated that HSV-2 infection enhances vaginal transmission and dissemination of HIV-1 infection while stimulating recruitment and activation of CD4(+) T cells and dendritic cells in the lower genital tract. HIV acquisition by hCD4/R5/cT1 mice vaginally coinfected with HSV-2 could be completely prevented in almost half the mice by preexposure prophylaxis (PrEP) with a novel gel containing tenofovir disoproxil fumarate (TDF), the tenofovir prodrug, but not with the tenofovir microbicide gel utilized in CAPRISA-004, VOICE, and FACTS-001 clinical trials. The hCD4/R5/cT1 mice represent a new preclinical mouse model to evaluate vaginal HIV-1 acquisition.


Asunto(s)
Antivirales/farmacología , Coinfección , Infecciones por VIH , VIH-1/inmunología , Herpes Genital , Herpesvirus Humano 2/inmunología , Animales , Coinfección/genética , Coinfección/inmunología , Coinfección/patología , Coinfección/prevención & control , Modelos Animales de Enfermedad , Femenino , Infecciones por VIH/genética , Infecciones por VIH/inmunología , Infecciones por VIH/patología , Infecciones por VIH/prevención & control , Herpes Genital/genética , Herpes Genital/inmunología , Herpes Genital/patología , Herpes Genital/prevención & control , Humanos , Masculino , Ratones , Ratones Transgénicos , Vagina/inmunología , Vagina/patología , Vagina/virología , Cremas, Espumas y Geles Vaginales/farmacología
15.
J Virol ; 89(12): 6264-74, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25833053

RESUMEN

UNLABELLED: Natural killer (NK) cells with anti-HIV-1 activity may inhibit HIV-1 replication and dissemination during acute HIV-1 infection. We hypothesized that the capacity of NK cells to suppress acute in vivo HIV-1 infection would be augmented by activating them via treatment with an interleukin-15 (IL-15) superagonist, IL-15 bound to soluble IL-15Rα, an approach that potentiates human NK cell-mediated killing of tumor cells. In vitro stimulation of human NK cells with a recombinant IL-15 superagonist significantly induced their expression of the cytotoxic effector molecules granzyme B and perforin; their degranulation upon exposure to K562 cells, as indicated by cell surface expression of CD107a; and their capacity to lyse K562 cells and HIV-1-infected T cells. The impact of IL-15 superagonist-induced activation of human NK cells on acute in vivo HIV-1 infection was investigated by using hu-spl-PBMC-NSG mice, NOD-SCID-IL2rγ(-/-) (NSG) mice intrasplenically injected with human peripheral blood mononuclear cells (PBMCs) which develop productive in vivo infection after intrasplenic inoculation with HIV-1. IL-15 superagonist treatment potently inhibited acute HIV-1 infection in hu-spl-PBMC-NSG mice even when delayed until 3 days after intrasplenic HIV-1 inoculation. Removal of NK cells from human PBMCs prior to intrasplenic injection into NSG mice completely abrogated IL-15 superagonist-mediated suppression of in vivo HIV-1 infection. Thus, the in vivo activation of NK cells, integral mediators of the innate immune response, by treatment with an IL-15 superagonist increases their anti-HIV activity and enables them to potently suppress acute in vivo HIV-1 infection. These results indicate that in vivo activation of NK cells may represent a new immunotherapeutic approach to suppress acute HIV-1 infection. IMPORTANCE: Epidemiological studies have indicated that NK cells contribute to the control of HIV-1 infection, and in vitro studies have demonstrated that NK cells can selectively kill HIV-1-infected cells. We demonstrated that in vivo activation of NK cells by treatment with an IL-15 superagonist that potently stimulates the antitumor activity of NK cells markedly inhibited acute HIV-1 infection in humanized mice, even when activation of NK cells by IL-15 superagonist treatment is delayed until 3 days after HIV-1 inoculation. NK cell depletion from PBMCs prior to their intrasplenic injection abrogated the suppression of in vivo HIV-1 infection observed in humanized mice treated with the IL-15 superagonist, demonstrating that activated human NK cells were mediating IL-15 superagonist-induced inhibition of acute HIV-1 infection. Thus, in vivo immunostimulation of NK cells, a promising therapeutic approach for cancer therapy, may represent a new treatment modality for HIV-1-infected individuals, particularly in the earliest stages of infection.


Asunto(s)
Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , Interleucina-15/antagonistas & inhibidores , Células Asesinas Naturales/inmunología , Activación de Linfocitos , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones SCID
16.
J Virol ; 89(19): 9952-61, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26202232

RESUMEN

UNLABELLED: Infants born to HIV-1-infected mothers in resource-limited areas where replacement feeding is unsafe and impractical are repeatedly exposed to HIV-1 throughout breastfeeding. Despite this, the majority of infants do not contract HIV-1 postnatally, even in the absence of maternal antiretroviral therapy. This suggests that immune factors in breast milk of HIV-1-infected mothers help to limit vertical transmission. We compared the HIV-1 envelope-specific breast milk and plasma antibody responses of clade C HIV-1-infected postnatally transmitting and nontransmitting mothers in the control arm of the Malawi-based Breastfeeding Antiretrovirals and Nutrition Study using multivariable logistic regression modeling. We found no association between milk or plasma neutralization activity, antibody-dependent cell-mediated cytotoxicity, or HIV-1 envelope-specific IgG responses and postnatal transmission risk. While the envelope-specific breast milk and plasma IgA responses also did not reach significance in predicting postnatal transmission risk in the primary model after correction for multiple comparisons, subsequent exploratory analysis using two distinct assay methodologies demonstrated that the magnitudes of breast milk total and secretory IgA responses against a consensus HIV-1 envelope gp140 (B.con env03) were associated with reduced postnatal transmission risk. These results suggest a protective role for mucosal HIV-1 envelope-specific IgA responses in the context of postnatal virus transmission. This finding supports further investigations into the mechanisms by which mucosal IgA reduces risk of HIV-1 transmission via breast milk and into immune interventions aimed at enhancing this response. IMPORTANCE: Infants born to HIV-1-infected mothers are repeatedly exposed to the virus in breast milk. Remarkably, the transmission rate is low, suggesting that immune factors in the breast milk of HIV-1-infected mothers help to limit transmission. We compared the antibody responses in plasma and breast milk of HIV-1-transmitting and -nontransmitting mothers to identify responses that correlated with reduced risk of postnatal HIV-1 transmission. We found that neither plasma nor breast milk IgG antibody responses were associated with risk of HIV-1 transmission. In contrast, the magnitudes of the breast milk IgA and secretory IgA responses against HIV-1 envelope proteins were associated with reduced risk of postnatal HIV-1 transmission. The results of this study support further investigations of the mechanisms by which mucosal IgA may reduce the risk of HIV-1 transmission via breastfeeding and the development of strategies to enhance milk envelope-specific IgA responses to reduce mother-to-child HIV transmission and promote an HIV-free generation.


Asunto(s)
Anticuerpos Anti-VIH/metabolismo , Infecciones por VIH/inmunología , Infecciones por VIH/transmisión , VIH-1 , Inmunoglobulina A/metabolismo , Transmisión Vertical de Enfermedad Infecciosa , Leche Humana/inmunología , Leche Humana/virología , Adulto , Anticuerpos Neutralizantes/metabolismo , Especificidad de Anticuerpos , Citotoxicidad Celular Dependiente de Anticuerpos , Lactancia Materna/efectos adversos , Femenino , Anticuerpos Anti-VIH/sangre , Infecciones por VIH/complicaciones , VIH-1/inmunología , Humanos , Inmunidad Mucosa , Inmunoglobulina A/sangre , Inmunoglobulina A Secretora/metabolismo , Inmunoglobulina G/metabolismo , Lactante , Recién Nacido , Malaui , Modelos Inmunológicos , Embarazo , Complicaciones Infecciosas del Embarazo/inmunología , Complicaciones Infecciosas del Embarazo/virología , Factores de Riesgo , Adulto Joven , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
17.
Proc Natl Acad Sci U S A ; 110(33): 13540-5, 2013 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-23878231

RESUMEN

In the absence of an effective HIV-1 vaccine, passive immunization using broadly neutralizing Abs or Ab-like molecules could provide an alternative to the daily administration of oral antiretroviral agents that has recently shown promise as preexposure prophylaxis. Currently, no single broadly neutralizing Ab (bNAb) or combination of bNAbs neutralizes all HIV-1 strains at practically achievable concentrations in vivo. To address this problem, we created bispecific Abs that combine the HIV-1 inhibitory activity of ibalizumab (iMab), a humanized mAb directed to domain 2 of human CD4, with that of anti-gp120 bNAbs. These bispecific bNAbs (BibNAbs) exploit iMab's potent anti-HIV-1 activity and demonstrated clinical efficacy and safety to anchor and thereby concentrate a second broadly neutralizing agent at the site of viral entry. Two BibNabs, PG9-iMab and PG16-iMab, exhibit exceptional breadth and potency, neutralizing 100% of the 118 viruses tested at low picomolar concentrations, including viruses resistant to both parental mAbs. The enhanced potency of these BibNAbs was entirely dependent on CD4 anchoring, not on membrane anchoring per se, and required optimal Ab geometry and linker length. We propose that iMab-based BibNAbs, such as PG9-iMab and PG16-iMab, are promising candidates for passive immunization to prevent HIV-1 infection.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida/prevención & control , Anticuerpos Biespecíficos/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Inmunización Pasiva/métodos , Anticuerpos Biespecíficos/farmacología , Anticuerpos Neutralizantes/farmacología , Antígenos CD4/inmunología , Cromatografía en Gel , Clonación Molecular , Ensayo de Inmunoadsorción Enzimática , Anticuerpos Anti-VIH/farmacología , Proteína gp120 de Envoltorio del VIH/inmunología , VIH-1/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Pruebas de Neutralización , Resonancia por Plasmón de Superficie
18.
Proc Natl Acad Sci U S A ; 110(17): 6626-33, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23542380

RESUMEN

Defining the virus-host interactions responsible for HIV-1 transmission, including the phenotypic requirements of viruses capable of establishing de novo infections, could be important for AIDS vaccine development. Previous analyses have failed to identify phenotypic properties other than chemokine receptor 5 (CCR5) and CD4+ T-cell tropism that are preferentially associated with viral transmission. However, most of these studies were limited to examining envelope (Env) function in the context of pseudoviruses. Here, we generated infectious molecular clones of transmitted founder (TF; n = 27) and chronic control (CC; n = 14) viruses of subtypes B (n = 18) and C (n = 23) and compared their phenotypic properties in assays specifically designed to probe the earliest stages of HIV-1 infection. We found that TF virions were 1.7-fold more infectious (P = 0.049) and contained 1.9-fold more Env per particle (P = 0.048) compared with CC viruses. TF viruses were also captured by monocyte-derived dendritic cells 1.7-fold more efficiently (P = 0.035) and more readily transferred to CD4+ T cells (P = 0.025). In primary CD4+ T cells, TF and CC viruses replicated with comparable kinetics; however, when propagated in the presence of IFN-α, TF viruses replicated to higher titers than CC viruses. This difference was significant for subtype B (P = 0.000013) but not subtype C (P = 0.53) viruses, possibly reflecting demographic differences of the respective patient cohorts. Together, these data indicate that TF viruses are enriched for higher Env content, enhanced cell-free infectivity, improved dendritic cell interaction, and relative IFN-α resistance. These viral properties, which likely act in concert, should be considered in the development and testing of AIDS vaccines.


Asunto(s)
Células Dendríticas/inmunología , VIH-1/genética , Fenotipo , Proteínas del Envoltorio Viral/metabolismo , Virión/patogenicidad , Secuencia de Bases , Linfocitos T CD4-Positivos/inmunología , Clonación Molecular , Ensayo de Inmunoadsorción Enzimática , Infecciones por VIH/inmunología , Infecciones por VIH/transmisión , VIH-1/inmunología , Humanos , Modelos Lineales , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
19.
J Virol ; 88(4): 2025-34, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24307588

RESUMEN

Macrophage infection is considered to play an important role in HIV-1 pathogenesis and persistence. Using a primary cell-based coculture model, we show that monocyte-derived macrophages (MDM) efficiently transmit a high-multiplicity HIV-1 infection to autologous CD4(+) T cells through a viral envelope glycoprotein (Env) receptor- and actin-dependent virological synapse (VS), facilitated by interactions between ICAM-1 and LFA-1. Virological synapse (VS)-mediated transmission by MDM results in high levels of T cell HIV-1 integration and is 1 to 2 orders of magnitude more efficient than cell-free infection. This mode of cell-to-cell transmission is broadly susceptible to the activity of CD4 binding site (CD4bs) and glycan or glycopeptide epitope-specific broadly neutralizing monoclonal antibodies (bNMAbs) but shows resistance to bNMAbs targeting the Env gp41 subunit membrane-proximal external region (MPER). These data define for the first time the structure and function of the macrophage-to-T cell VS and have important implications for bNMAb activity in HIV-1 prophylaxis and therapy. IMPORTANCE The ability of HIV-1 to move directly between contacting immune cells allows efficient viral dissemination with the potential to evade antibody attack. Here, we show that HIV-1 spreads from infected macrophages to T cells via a structure called a virological synapse that maintains extended contact between the two cell types, allowing transfer of multiple infectious events to the T cell. This process allows the virus to avoid neutralization by a class of antibody targeting the gp41 subunit of the envelope glycoproteins. These results have implications for viral spread in vivo and the specificities of neutralizing antibody elicited by antibody-based vaccines.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Linfocitos T CD4-Positivos/inmunología , Infecciones por VIH/transmisión , Evasión Inmune/inmunología , Sinapsis Inmunológicas/virología , Macrófagos/inmunología , Análisis de Varianza , Antígenos CD4/metabolismo , Linfocitos T CD4-Positivos/virología , Cartilla de ADN/genética , Proteína gp41 de Envoltorio del VIH/inmunología , Infecciones por VIH/inmunología , Molécula 1 de Adhesión Intercelular/metabolismo , Luciferasas , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Macrófagos/virología , Microscopía Confocal , Pruebas de Neutralización , Reacción en Cadena de la Polimerasa , Imagen de Lapso de Tiempo
20.
J Virol ; 88(5): 2489-507, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24352443

RESUMEN

UNLABELLED: Standardized assessments of HIV-1 vaccine-elicited neutralizing antibody responses are complicated by the genetic and antigenic variability of the viral envelope glycoproteins (Envs). To address these issues, suitable reference strains are needed that are representative of the global epidemic. Several panels have been recommended previously, but no clear answers have been available on how many and which strains are best suited for this purpose. We used a statistical model selection method to identify a global panel of reference Env clones from among 219 Env-pseudotyped viruses assayed in TZM-bl cells with sera from 205 HIV-1-infected individuals. The Envs and sera were sampled globally from diverse geographic locations and represented all major genetic subtypes and circulating recombinant forms of the virus. Assays with a panel size of only nine viruses adequately represented the spectrum of HIV-1 serum neutralizing activity seen with the larger panel of 219 viruses. An optimal panel of nine viruses was selected and augmented with three additional viruses for greater genetic and antigenic coverage. The spectrum of HIV-1 serum neutralizing activity seen with the final 12-virus panel closely approximated the activity seen with subtype-matched viruses. Moreover, the final panel was highly sensitive for detection of many of the known broadly neutralizing antibodies. For broader assay applications, all 12 Env clones were converted to infectious molecular clones using a proviral backbone carrying a Renilla luciferase reporter gene (Env.IMC.LucR viruses). This global panel should facilitate highly standardized assessments of vaccine-elicited neutralizing antibodies across multiple HIV-1 vaccine platforms in different parts of the world. IMPORTANCE: An effective HIV-1 vaccine will need to overcome the extraordinary genetic variability of the virus, where most variation occurs in the viral envelope glycoproteins that are the sole targets for neutralizing antibodies. Efforts to elicit broadly cross-reactive neutralizing antibodies that will protect against infection by most circulating strains of the virus are guided in part by in vitro assays that determine the ability of vaccine-elicited antibodies to neutralize genetically diverse HIV-1 variants. Until now, little information was available on how many and which strains of the virus are best suited for this purpose. We applied robust statistical methods to evaluate a large neutralization data set and identified a small panel of viruses that are a good representation of the global epidemic. The neutralization properties of this new panel of reference strains should facilitate the development of an effective HIV-1 vaccine.


Asunto(s)
Vacunas contra el SIDA/inmunología , Vacunas contra el SIDA/normas , Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Secuencia de Aminoácidos , Especificidad de Anticuerpos/inmunología , Línea Celular , Análisis por Conglomerados , Reacciones Cruzadas/inmunología , Epítopos/inmunología , VIH-1/clasificación , VIH-1/genética , Humanos , Datos de Secuencia Molecular , Pruebas de Neutralización/normas , Filogenia , Receptores del VIH , Reproducibilidad de los Resultados , Alineación de Secuencia , Tropismo Viral , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA