Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 44(18)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38485256

RESUMEN

The ventral pallidum (VP) is a central hub in the reward circuitry with diverse projections that have different behavioral roles attributed mostly to the connectivity with the downstream target. However, different VP projections may represent, as in the striatum, separate neuronal populations that differ in more than just connectivity. In this study, we performed in mice of both sexes a multimodal dissection of four major projections of the VP-to the lateral hypothalamus (VP→LH), ventral tegmental area (VP→VTA), lateral habenula (VP→LHb), and mediodorsal thalamus (VP→MDT)-with physiological, anatomical, genetic, and behavioral tools. We also tested for physiological differences between VP neurons receiving input from nucleus accumbens medium spiny neurons (MSNs) that express either the D1 (D1-MSNs) or the D2 (D2-MSNs) dopamine receptor. We show that each VP projection (1) when inhibited during a cocaine conditioned place preference (CPP) test affects performance differently, (2) receives a different pattern of inputs using rabies retrograde labeling, (3) shows differentially expressed genes using RNA sequencing, and (4) has projection-specific characteristics in excitability and synaptic input characteristics using whole-cell patch clamp. VP→LH and VP→VTA projections have different effects on CPP and show low overlap in circuit tracing experiments, as VP→VTA neurons receive more striatal input, while VP→LH neurons receive more olfactory input. Additionally, VP→VTA neurons are less excitable, while VP→LH neurons are more excitable than the average VP neuron, a difference driven mainly by D2-MSN-responding neurons. Thus, VP→VTA and VP→LH neurons may represent largely distinct populations of VP neurons.


Asunto(s)
Prosencéfalo Basal , Cocaína , Vías Nerviosas , Recompensa , Animales , Ratones , Prosencéfalo Basal/fisiología , Masculino , Cocaína/farmacología , Cocaína/administración & dosificación , Femenino , Vías Nerviosas/fisiología , Ratones Endogámicos C57BL , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética , Área Tegmental Ventral/fisiología , Área Tegmental Ventral/citología
2.
J Neurosci ; 40(6): 1321-1331, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31836660

RESUMEN

Cocaine-driven changes in the modulation of neurotransmission by neuromodulators are poorly understood. The ventral pallidum (VP) is a key structure in the reward system, in which GABA neurotransmission is regulated by opioid neuropeptides, including dynorphin. However, it is not known whether dynorphin acts differently on different cell types in the VP and whether its effects are altered by withdrawal from cocaine. Here, we trained wild-type, D1-Cre, A2A-Cre, or vGluT2-Cre:Ai9 male and female mice in a cocaine conditioned place preference protocol followed by 2 weeks of abstinence, and then recorded GABAergic synaptic input evoked either electrically or optogenetically onto identified VP neurons before and after applying dynorphin. We found that after cocaine CPP and abstinence dynorphin attenuated inhibitory input to VPGABA neurons through a postsynaptic mechanism. This effect was absent in saline mice. Furthermore, this effect was seen specifically on the inputs from nucleus accumbens medium spiny neurons expressing either the D1 or the D2 dopamine receptor. Unlike its effect on VPGABA neurons, dynorphin surprisingly potentiated the inhibitory input on VPvGluT2 neurons, but this effect was abolished after cocaine CPP and abstinence. Thus, dynorphin has contrasting influences on GABA input to VPGABA and VPvGluT2 neurons and these influences are affected differentially by cocaine CPP and abstinence. Collectively, our data suggest a role for dynorphin in withdrawal through its actions in the VP. As VPGABA and VPvGluT2 neurons have contrasting effects on drug-seeking behavior, our data may indicate a complex role for dynorphin in withdrawal from cocaine.SIGNIFICANCE STATEMENT The ventral pallidum consists mainly of GABAergic reward-promoting neurons, but it also encloses a subgroup of aversion-promoting glutamatergic neurons. Dynorphin, an opioid neuropeptide abundant in the ventral pallidum, shows differential modulation of GABA input to GABAergic and glutamatergic pallidal neurons and may therefore affect both the rewarding and aversive aspects of withdrawal. Indeed, abstinence after repeated exposure to cocaine alters dynorphin actions in a cell-type-specific manner; after abstinence dynorphin suppresses the inhibitory drive on the "rewarding" GABAergic neurons but ceases to modulate the inhibitory drive on the "aversive" glutamatergic neurons. This reflects a complex role for dynorphin in cocaine reward and abstinence.


Asunto(s)
Prosencéfalo Basal/metabolismo , Cocaína/farmacología , Dinorfinas/metabolismo , Neuronas/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Transmisión Sináptica/fisiología , Animales , Prosencéfalo Basal/citología , Prosencéfalo Basal/efectos de los fármacos , Comportamiento de Búsqueda de Drogas/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Recompensa , Transmisión Sináptica/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA