Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Curr Issues Mol Biol ; 45(4): 3674-3704, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37185763

RESUMEN

Antimicrobial peptides (AMPs) are short polypeptide molecules produced by multicellular organisms that are involved in host defense and microbiome preservation. In recent years, AMPs have attracted attention as novel drug candidates. However, their successful use requires detailed knowledge of the mode of action and identification of the determinants of biological activity. In this review, we focused on structure-function relationships in the thionins, α-hairpinins, hevein-like peptides, and the unique Ib-AMP peptides isolated from Impatiens balsamina. We summarized the available data on the amino acid sequences and 3D structure of peptides, their biosynthesis, and their biological activity. Special attention was paid to the determination of residues that play a key role in the activity and the identification of the minimal active cores. We have shown that even subtle changes in amino acid sequences can affect the biological activity of AMPs, which opens up the possibility of creating molecules with improved properties, better therapeutic efficacy, and cheaper large-scale production.

2.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36613926

RESUMEN

The γ-core motif is a structural element shared by most host antimicrobial peptides (AMPs), which is supposed to contribute to their antimicrobial properties. In this review, we summarized the available data on the γ-core peptides of plant AMPs. We describe γ-core peptides that have been shown to exhibit inhibitory activity against plant and human bacterial and fungal pathogens that make them attractive scaffolds for the development of novel anti-infective agents. Their advantages include origin from natural AMP sequences, broad-spectrum and potent inhibitory activity, and cost-effective production. In addition, some γ-core peptides combine antimicrobial and immunomodulatory functions, thus broadening the spectrum of practical applications. Some act synergistically with antimycotics and fungicides, so combinations of peptides with conventionally used antifungal agents can be suggested as an effective strategy to reduce the doses of potentially harmful chemicals. The presented information will pave the way for the design of novel antimicrobials on the basis of γ-core motif peptides, which can find application in medicine and the protection of crops from diseases.


Asunto(s)
Antiinfecciosos , Péptidos Antimicrobianos , Humanos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Péptidos/farmacología , Péptidos/química , Antifúngicos/farmacología , Plantas , Agricultura
3.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35955519

RESUMEN

Antimicrobial peptides (AMPs) constitute an essential part of the plant immune system. They are regarded as alternatives to conventional antibiotics and pesticides. In this study, we have identified the γ-core motifs, which are associated with antimicrobial activity, in 18 AMPs from grasses and assayed their antimicrobial properties against nine pathogens, including yeasts affecting humans, as well as plant pathogenic bacteria and fungi. All the tested peptides displayed antimicrobial properties. We discovered a number of short AMP-derived peptides with high antimicrobial activity both against human and plant pathogens. For the first time, antimicrobial activity was revealed in the peptides designed from the 4-Cys-containing defensin-like peptides, whose role in plant immunity has remained unknown, as well as the knottin-like peptide and the C-terminal prodomain of the thionin, which points to the direct involvement of these peptides in defense mechanisms. Studies of the mode of action of the eight most active γ-core motif peptides on yeast cells using staining with propidium iodide showed that all of them induced membrane permeabilization leading to cell lysis. In addition to identification of the antimicrobial determinants in plant AMPs, this work provides short candidate peptide molecules for the development of novel drugs effective against opportunistic fungal infections and biopesticides to control plant pathogens.


Asunto(s)
Péptidos Antimicrobianos , Poaceae , Antibacterianos/farmacología , Bacterias , Humanos , Péptidos/farmacología , Plantas
4.
Curr Issues Mol Biol ; 43(3): 1226-1242, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34698084

RESUMEN

Plant cysteine-rich peptides (CRPs) represent a diverse group of molecules involved in different aspects of plant physiology. Antimicrobial peptides, which directly suppress the growth of pathogens, are regarded as promising templates for the development of next-generation pharmaceuticals and ecologically friendly plant disease control agents. Their oligopeptide fragments are even more promising because of their low production costs. The goal of this work was to explore the antimicrobial activity of nine short peptides derived from the γ-core-containing regions of tomato CRPs against important plant and human pathogens. We discovered antimicrobial activity in peptides derived from the defensin-like peptides, snakins, and MEG, which demonstrates the direct involvement of these CRPs in defense reactions in tomato. The CRP-derived short peptides appeared particularly active against the gram-positive bacterium Clavibacter michiganensis, which causes bacterial wilt-opening up new possibilities for their use in agriculture to control this dangerous disease. Furthermore, high inhibitory potency of short oligopeptides was demonstrated against the yeast Cryptococcus neoformans, which causes serious diseases in humans, making these peptide molecules promising candidates for the development of next-generation pharmaceuticals. Studies of the mode of action of the two most active peptides indicate fungal membrane permeabilization as a mechanism of antimicrobial action.


Asunto(s)
Péptidos Antimicrobianos/síntesis química , Péptidos Antimicrobianos/farmacología , Cisteína/química , Oligopéptidos/síntesis química , Oligopéptidos/farmacología , Solanum lycopersicum/química , Secuencia de Aminoácidos , Bacterias/efectos de los fármacos , Técnicas de Química Sintética , Relación Dosis-Respuesta a Droga , Solanum lycopersicum/inmunología , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Oligopéptidos/química , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Conformación Proteica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Relación Estructura-Actividad , Levaduras/efectos de los fármacos
5.
Int J Mol Sci ; 22(11)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34072144

RESUMEN

Cysteine-rich peptides (CRPs) play an important role in plant physiology. However, their role in resistance induced by biogenic elicitors remains poorly understood. Using whole-genome transcriptome sequencing and our CRP search algorithm, we analyzed the repertoire of CRPs in tomato Solanum lycopersicum L. in response to Fusarium oxysporum infection and elicitors from F. sambucinum. We revealed 106 putative CRP transcripts belonging to different families of antimicrobial peptides (AMPs), signaling peptides (RALFs), and peptides with non-defense functions (Major pollen allergen of Olea europaea (Ole e 1 and 6), Maternally Expressed Gene (MEG), Epidermal Patterning Factor (EPF)), as well as pathogenesis-related proteins of families 1 and 4 (PR-1 and 4). We discovered a novel type of 10-Cys-containing hevein-like AMPs named SlHev1, which was up-regulated both by infection and elicitors. Transcript profiling showed that F. oxysporum infection and F. sambucinum elicitors changed the expression levels of different overlapping sets of CRP genes, suggesting the diversification of functions in CRP families. We showed that non-specific lipid transfer proteins (nsLTPs) and snakins mostly contribute to the response of tomato plants to the infection and the elicitors. The involvement of CRPs with non-defense function in stress reactions was also demonstrated. The results obtained shed light on the mode of action of F. sambucinum elicitors and the role of CRP families in the immune response in tomato.


Asunto(s)
Cisteína , Resistencia a la Enfermedad/genética , Péptidos/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Biología Computacional/métodos , Secuencia Conservada , Cisteína/química , Cisteína/genética , Resistencia a la Enfermedad/inmunología , Perfilación de la Expresión Génica , Solanum lycopersicum/inmunología , Modelos Moleculares , Péptidos/química , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Conformación Proteica , Transcriptoma
7.
J Biol Chem ; 289(20): 14331-40, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24671422

RESUMEN

In this study, we present the spatial structure of the wheat antimicrobial peptide (AMP) Tk-AMP-X2 studied using NMR spectroscopy. This peptide was found to adopt a disulfide-stabilized α-helical hairpin fold and therefore belongs to the α-hairpinin family of plant defense peptides. Based on Tk-AMP-X2 structural similarity to cone snail and scorpion potassium channel blockers, a mutant molecule, Tk-hefu, was engineered by incorporating the functionally important residues from κ-hefutoxin 1 onto the Tk-AMP-X2 scaffold. The designed peptide contained the so-called essential dyad of amino acid residues significant for channel-blocking activity. Electrophysiological studies showed that although the parent peptide Tk-AMP-X2 did not present any activity against potassium channels, Tk-hefu blocked Kv1.3 channels with similar potency (IC50 ∼ 35 µm) to κ-hefutoxin 1 (IC50 ∼ 40 µm). We conclude that α-hairpinins are attractive in their simplicity as structural templates, which may be used for functional engineering and drug design.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/genética , Neurotoxinas/química , Ingeniería de Proteínas , Escorpiones/química , Triticum/química , Animales , Péptidos Catiónicos Antimicrobianos/farmacología , Disulfuros/química , Fenómenos Electrofisiológicos/efectos de los fármacos , Modelos Moleculares , Neurotoxinas/genética , Resonancia Magnética Nuclear Biomolecular , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/farmacología , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología
8.
Plant Mol Biol ; 89(3): 203-14, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26369913

RESUMEN

Leymus arenarius is a unique wild growing Poaceae plant exhibiting extreme tolerance to environmental conditions. In this study we for the first time performed whole-transcriptome sequencing of lymegrass seedlings using Illumina platform followed by de novo transcriptome assembly and functional annotation. Our goal was to identify transcripts encoding antimicrobial peptides (AMPs), one of the key components of plant innate immunity. Using the custom software developed for this study that predicted AMPs and classified them into families, we revealed more than 160 putative AMPs in lymegrass seedlings. We classified them into 7 families based on their cysteine motifs and sequence similarity. The families included defensins, thionins, hevein-like peptides, snakins, cyclotide, alfa-hairpinins and LTPs. This is the first communication about the presence of almost all known AMP families in trascriptomic data of a single plant species. Additionally, cysteine-rich peptides that potentially represent novel families of AMPs were revealed. We have confirmed by RT-PCR validation the presence of 30 transcripts encoding selected AMPs in lymegrass seedlings. In summary, the presented method of pAMP prediction developed by us can be applied for relatively fast and simple screening of novel components of plant immunity system and is well suited for whole-transcriptome or genome analysis of uncharacterized plants.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Regulación de la Expresión Génica de las Plantas/inmunología , Poaceae/química , ARN de Planta/genética , Transcriptoma , Péptidos Catiónicos Antimicrobianos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Plant Mol Biol ; 84(1-2): 189-202, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24081691

RESUMEN

Plant defense against disease is a complex multistage system involving initial recognition of the invading pathogen, signal transduction and activation of specialized genes. An important role in pathogen deterrence belongs to so-called plant defense peptides, small polypeptide molecules that present antimicrobial properties. Using multidimensional liquid chromatography, we isolated a novel antifungal peptide named Sm-AMP-X (33 residues) from the common chickweed (Stellaria media) seeds. The peptide sequence shows no homology to any previously described proteins. The peculiar cysteine arrangement (C(1)X3C(2)XnC(3)X3C(4)), however, allocates Sm-AMP-X to the recently acknowledged α-hairpinin family of plant defense peptides that share the helix-loop-helix fold stabilized by two disulfide bridges C(1)-C(4) and C(2)-C(3). Sm-AMP-X exhibits high broad-spectrum activity against fungal phytopathogens. We further showed that the N- and C-terminal "tail" regions of the peptide are important for both its structure and activity. The truncated variants Sm-AMP-X1 with both disulfide bonds preserved and Sm-AMP-X2 with only the internal S-S-bond left were progressively less active against fungi and presented largely disordered structure as opposed to the predominantly helical conformation of the full-length antifungal peptide. cDNA and gene cloning revealed that Sm-AMP-X is processed from a unique multimodular precursor protein that contains as many as 12 tandem repeats of α-hairpinin-like peptides. Structure of the sm-amp-x gene and two related pseudogenes sm-amp-x-ψ1 and sm-amp-x-ψ2 allows tracing the evolutionary scenario that led to generation of such a sophisticated precursor protein. Sm-AMP-X is a new promising candidate for engineering disease resistance in plants.


Asunto(s)
Antifúngicos/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Stellaria/química , Secuencia de Aminoácidos , Antifúngicos/química , Clonación Molecular , Evolución Molecular , Hongos/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/fisiología , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Semillas/química , Semillas/genética , Stellaria/metabolismo
10.
J Fungi (Basel) ; 10(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38667929

RESUMEN

Peptides play an essential role in plant development and immunity. Filipendula ulmaria, belonging to the Rosaceae family, is a medicinal plant which exhibits valuable pharmacological properties. F. ulmaria extracts in vitro inhibit the growth of a variety of plant and human pathogens. The role of peptides in defense against pathogens in F. ulmaria remains unknown. The objective of this study was to explore the repertoire of antimicrobial (AMPs) and defense-related signaling peptide genes expressed by F. ulmaria in response to infection with Bipolaris sorokiniana using RNA-seq. Transcriptomes of healthy and infected plants at two time points were sequenced on the Illumina HiSeq500 platform and de novo assembled. A total of 84 peptide genes encoding novel putative AMPs and signaling peptides were predicted in F. ulmaria transcriptomes. They belong to known, as well as new, peptide families. Transcriptional profiling in response to infection disclosed complex expression patterns of peptide genes and identified both up- and down-regulated genes in each family. Among the differentially expressed genes, the vast majority were down-regulated, suggesting suppression of the immune response by the fungus. The expression of 13 peptide genes was up-regulated, indicating their possible involvement in triggering defense response. After functional studies, the encoded peptides can be used in the development of novel biofungicides and resistance inducers.

11.
Biochem Biophys Res Commun ; 411(1): 14-8, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21704019

RESUMEN

Hevein, a well-studied lectin from the rubber tree Hevea brasiliensis, is the title representative of a broad family of chitin-binding polypeptides. WAMP-1a, a peptide isolated from the wheat Triticum kiharae, shares considerable similarity with hevein. The peptide possesses antifungal, antibacterial activity and is thought to play an important role in the defense system of wheat. Importantly, it features a substitution of the conserved serine residue to glycine reducing its carbohydrate-binding capacity. We used NMR spectroscopy to derive the spatial structure of WAMP-1a in aqueous solution. Notably, the mutation was found to strengthen amphiphilicity of the molecule, associated with its mode of action, an indication of the hevein domain multi-functionality. Both primary and tertiary structure of WAMP-1a suggest its evolutionary origin from the hevein domain of plant chitinases.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Lectinas de Plantas/química , Triticum/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Péptidos Catiónicos Antimicrobianos/genética , Cisteína/química , Cisteína/genética , Datos de Secuencia Molecular , Lectinas de Plantas/genética , Conformación Proteica , Soluciones , Triticum/genética
12.
Life (Basel) ; 11(10)2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34685435

RESUMEN

Plants have evolved a complex multilayered defense system to counteract various invading pathogens during their life cycle. In addition to silencing, considered to be a major molecular defense response against viruses, different signaling pathways activated by phytohormones trigger the expression of secondary metabolites and proteins preventing virus entry and propagation. In this study, we explored the response of cucumber plants to one of the global pathogens, cucumber green mottle mosaic virus (CGMMV), which causes severe symptoms on leaves and fruits. The inbred line of Cucumis sativus L., which is highly susceptible to CGMMV, was chosen for inoculation. Transcriptomes of infected plants at the early and late stages of infection were analyzed in comparison with the corresponding transcriptomes of healthy plants using RNA-seq. The changes in the signaling pathways of ethylene and salicylic and jasmonic acids, as well as the differences in silencing response and expression of pathogenesis-related proteins and transcription factors, were revealed. The results show that silencing was strongly suppressed in infected plants, while the salicylic acid and ethylene signaling pathways were induced. The genes encoding pathogenesis-related proteins and the genes involved in the jasmonic acid pathway changed their expression insignificantly. It was also found that WRKY and NAC were the most sensitive to CGMMV infection among the transcription factors detected.

13.
Antibiotics (Basel) ; 9(2)2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32032999

RESUMEN

Antimicrobial peptides (AMPs) are a key component of innate immunity in various organisms including bacteria, insects, mammals, and plants. Their mode of action decreases the probability of developing resistance in pathogenic organisms, which makes them a promising object of study. However, molecular biology methods for searching for AMPs are laborious and expensive, especially for plants. Earlier, we developed a computational pipeline for identifying potential AMPs based on the cysteine motifs they usually possess. Since most motifs are too species-specific, a wide-scale screening of novel data is required to maintain the accuracy of searching algorithms. We have performed a search for potential AMPs in 1267 plant transcriptomes using our pipeline. On average, 50-150 peptides were revealed in each transcriptome. The data was verified by a BLASTp search in nr database to confirm peptide functions and by using random nucleotide sequences to estimate the fraction of erroneous predictions. The datasets obtained will be useful both for molecular biologists investigating AMPs in various organisms and for bioinformaticians developing novel algorithms of motif searching in transcriptomic and genomic sequences. The results obtained will represent a good reference point for future investigations in the fields mentioned above.

14.
Biomolecules ; 10(7)2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32664422

RESUMEN

The grass family (Poaceae) is one of the largest families of flowering plants, growing in all climatic zones of all continents, which includes species of exceptional economic importance. The high adaptability of grasses to adverse environmental factors implies the existence of efficient resistance mechanisms that involve the production of antimicrobial peptides (AMPs). Of plant AMPs, defensins represent one of the largest and best-studied families. Although wheat and barley seed γ-thionins were the first defensins isolated from plants, the functional characterization of grass defensins is still in its infancy. In this review, we summarize the current knowledge of the characterized defensins from cultivated and selected wild-growing grasses. For each species, isolation of defensins or production by heterologous expression, peptide structure, biological activity, and structure-function relationship are described, along with the gene expression data. We also provide our results on in silico mining of defensin-like sequences in the genomes of all described grass species and discuss their potential functions. The data presented will form the basis for elucidation of the mode of action of grass defensins and high adaptability of grasses to environmental stress and will provide novel potent molecules for practical use in medicine and agriculture.


Asunto(s)
Defensinas/genética , Defensinas/farmacología , Poaceae/metabolismo , Defensinas/química , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/farmacología , Poaceae/genética , Conformación Proteica , Relación Estructura-Actividad
15.
Antibiotics (Basel) ; 9(12)2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33291849

RESUMEN

There are increasing environmental risks associated with extensive use of fungicides for crop protection. Hence, the use of new approaches using natural plant defense mechanisms, including application of plant antimicrobial peptides (AMPs), is of great interest. Recently, we studied the structural-function relationships between antifungal activity and five hevein-like AMPs from the WAMP (wheat AMP) family of Triticum kiharae Dorof. et Migush. We first discovered that short peptides derived from the central, N-, and C-terminal regions of one of the WAMPs (WAMP-2) were able to augment the inhibitory effect of Folicur® EC 250, a triazole fungicide, on spore germination of the wheat pathogenic fungi, including Fusarium spp. and Alternaria alternata. In this research, we explored the ability of chemically synthesized WAMP-2-derived peptides for enhancing the sensitivity of two other Fusarium and Alternaria species, F. oxysporum and A. solani, causing wilt and early blight of tomato, respectively, to Folicur®. The synthesized WAMP-2-derived peptides synergistically interacted with the fungicide and significantly increased its efficacy, inhibiting conidial germination at much lower Folicur® concentrations than required for the same efficiency using the fungicide alone. The experiments on co-applications of some of WAMP-2-fragments and the fungicide on tomato leaves and seedlings, which confirmed the results obtained in vitro, are described.

16.
Pathogens ; 8(4)2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31694319

RESUMEN

Non-specific lipid-transfer proteins (nsLTPs) represent a family of plant antimicrobial peptides (AMPs) implicated in diverse physiological processes. However, their role in induced resistance (IR) triggered by non-pathogenic fungal strains and their metabolites is poorly understood. In this work, using RNA-seq data and our AMP search pipeline, we analyzed the repertoire of nsLTP genes in the wheat Triticum kiharae and studied their expression in response to Fusarium oxysporum infection and treatment with the intracellular metabolites of Fusarium sambucinum FS-94. A total of 243 putative nsLTPs were identified, which were classified into five structural types and characterized. Expression analysis showed that 121 TkLTPs including sets of paralogs with identical mature peptides displayed specific expression patters in response to different treatments pointing to their diverse roles in resistance development. We speculate that upregulated nsLTP genes are involved in protection due to their antimicrobial activity or signaling functions. Furthermore, we discovered that in IR-displaying plants, a vast majority of nsLTP genes were downregulated, suggesting their role as negative regulators of immune mechanisms activated by the FS-94 elicitors. The results obtained add to our knowledge of the role of nsLTPs in IR and provide candidate molecules for genetic engineering of crops to enhance disease resistance.

17.
PeerJ ; 7: e6125, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30643692

RESUMEN

Antimicrobial peptides (AMPs) are the main components of the plant innate immune system. Defensins represent the most important AMP family involved in defense and non-defense functions. In this work, global RNA sequencing and de novo transcriptome assembly were performed to explore the diversity of defensin-like (DEFL) genes in the wheat Triticum kiharae and to study their role in induced resistance (IR) mediated by the elicitor metabolites of a non-pathogenic strain FS-94 of Fusarium sambucinum. Using a combination of two pipelines for DEFL mining in transcriptome data sets, as many as 143 DEFL genes were identified in T. kiharae, the vast majority of them represent novel genes. According to the number of cysteine residues and the cysteine motif, wheat DEFLs were classified into ten groups. Classical defensins with a characteristic 8-Cys motif assigned to group 1 DEFLs represent the most abundant group comprising 52 family members. DEFLs with a characteristic 4-Cys motif CX{3,5}CX{8,17}CX{4,6}C named group 4 DEFLs previously found only in legumes were discovered in wheat. Within DEFL groups, subgroups of similar sequences originated by duplication events were isolated. Variation among DEFLs within subgroups is due to amino acid substitutions and insertions/deletions of amino acid sequences. To identify IR-related DEFL genes, transcriptional changes in DEFL gene expression during elicitor-mediated IR were monitored. Transcriptional diversity of DEFL genes in wheat seedlings in response to the fungus Fusarium oxysporum, FS-94 elicitors, and the combination of both (elicitors + fungus) was demonstrated, with specific sets of up- and down-regulated DEFL genes. DEFL expression profiling allowed us to gain insight into the mode of action of the elicitors from F. sambucinum. We discovered that the elicitors up-regulated a set of 24 DEFL genes. After challenge inoculation with F. oxysporum, another set of 22 DEFLs showed enhanced expression in IR-displaying seedlings. These DEFLs, in concert with other defense molecules, are suggested to determine enhanced resistance of elicitor-pretreated wheat seedlings. In addition to providing a better understanding of the mode of action of the elicitors from FS-94 in controlling diseases, up-regulated IR-specific DEFL genes represent novel candidates for genetic transformation of plants and development of pathogen-resistant crops.

18.
Biochimie ; 90(6): 939-46, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18358845

RESUMEN

The origin of polyploid wheat genomes has been the subject of numerous studies and is the key problem in wheat phylogeny. Different diploid species have been supposed to donate genomes to tetraploid and hexaploid wheat species. To shed light on phylogenetic relationships between the presumable A genome donors and hexaploid wheat species we have applied a new approach: the comparison of defensins from diploid Triticum species, Triticum boeoticum Boiss. and Triticum urartu Thum. ex Gandil., with previously characterized Triticum kiharae defensins [T.I. Odintsova et al., Biochimie 89 (2007) 605-612]. Defensins were isolated by acidic extraction of seeds followed by three-step chromatographic separation. Isolated defensins were identified by molecular masses using MALDI-TOF mass spectrometry and N-terminal sequencing. For the first time, we have shown that T. urartu defensins are more similar to those of the hexaploid wheat than T. boeoticum defensins, although variation among samples collected in different regions of the world was revealed. Our results clearly demonstrate that T. urartu of the Asian origin contributed the A genome to polyploid wheat species.


Asunto(s)
Defensinas/química , Triticum/clasificación , Secuencia de Aminoácidos , Defensinas/clasificación , Defensinas/aislamiento & purificación , Genoma de Planta , Datos de Secuencia Molecular , Filogenia , Poliploidía , Semillas/química , Triticum/química , Triticum/genética
19.
Pathogens ; 7(3)2018 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-30011945

RESUMEN

An approach to manage seed-transmitted Fusarium crown-foot-root rot (FCR, Fusarium spp.) and common root rot (CRR, Bipolaris sorokiniana) on wheat, avoiding environmental risks of chemicals, is seed treatments with microbial metabolites. F. sambucinum strain FS-94 that induces resistance to tomato wilt was shown by this study to be a source of non-fungitoxic wheat-protecting metabolites, which were contained in a mycelium extract purified by gel-chromatography and ultrafiltration. Plant-protecting effect of the purified mycelial extract (PME) was demonstrated in vegetation experiments using a rolled-towel assay and by small-plot field trials. To elucidate mechanisms putatively underlying PME protective activity, tests with cultured Triticum aestivum and T. kiharae cells, particularly the extracellular alkalinization assay, as well as gene expression analysis in germinated wheat seeds were used. Pre-inoculation treatments of seeds with PME significantly decreased the incidence (from 30 to 40%) and severity (from 37 to 50%) of root rots on seedlings without any inhibition of the seed germination and potentiation of deoxynivalenol (DON), DON monoacetylated derivatives and zearalenon production in FCR agents. In vegetation experiments, reductions in the DON production were observed with doses of 0.5 and 1 mg/mL of PME. Pre-sowing PME application on seeds of two spring wheat cultivars naturally infected with FCR and CRR provided the mitigation of both diseases under field conditions during four growing seasons (2013⁻2016). PME-induced ion exchange response in cultured wheat cells, their increased survivability, and up-regulated expression of some defensins' genes in PME-exposed seedlings allow the suggestion of the plant-mediated character of disease-controlling effect observed in field.

20.
Biochimie ; 89(5): 605-12, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17321030

RESUMEN

Ten new defensins have been isolated from seeds of Triticum kiharae and related species of the Triticum and Aegilops genera by a combination of chromatographic procedures including affinity-, size-exclusion, and reversed-phase high-performance liquid chromatography. Nine were completely sequenced and shown to represent a family of closely related peptides with highly conserved amino acid sequences. Analysis of defensin compositions in diploid A-, B-, and D-genome donors to polyploid wheat allowed us for the first time to assign most defensin-encoding genes to particular hexaploid wheat genomes.


Asunto(s)
Defensinas/genética , Semillas/inmunología , Triticum/inmunología , Secuencia de Aminoácidos , Cromatografía , Genes de Plantas , Genoma de Planta , Proteínas de Plantas , Triticum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA