Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Wellcome Open Res ; 7: 43, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35402734

RESUMEN

Background: Maternal immunisation to boost respiratory syncytial virus (RSV) antibodies in pregnant women, is a strategy being considered to enhance infant protection from severe RSV associated disease. However, little is known about the efficiency of transplacental transfer of RSV-specific antibodies in a setting with a high burden of malaria and HIV, to guide the implementation of such a vaccination program. Methods: Using a plaque reduction neutralization assay, we screened 400 pairs of cord and maternal serum specimens from pregnant women for RSV-specific antibodies. Participants were pregnant women of two surveillance cohorts: 200 participants from a hospital cohort in Kilifi, Coastal Kenya and 200 participants from a surveillance cohort in Siaya, Western Kenya. Transplacental transfer efficiency was determined by the cord to maternal transfer ratio (CMTR). Logistic regression was used to determine independent predictors of impaired transplacental transfer of RSV-specific antibodies. Results: A total of 800 samples were screened from the 400 participants. At enrollment the median age was 25 years (Interquartile range (IQR): 21-31). Overall, transplacental transfer was efficient and did not differ between Kilifi and Siaya cohort (1.02 vs. 1.02; p=0.946) but was significantly reduced among HIV-infected mothers compared to HIV-uninfected mothers (mean CMTR: 0.98 vs 1.03; p=0.015). Prematurity <33 weeks gestation (Odds ratio [OR]: 0.23, 95% confidence interval [CI] 0.06-0.85; p=0.028), low birth weight <2.5 kgs (OR: 0.25, 95% CI: 0.07-0.94; p=0.041) and HIV infection (OR: 0.47, 95% CI:0.23-0.98; p=0.045) reduced efficiency of transplacental transfer among these women. Conclusions: Transplacental transfer of RSV-specific antibodies among pregnant women in Kenya is efficient. A consideration to integrate other preventive interventions with maternal RSV vaccination targeting infants born premature (<33 weeks gestation), with low birth weight <2.5 kgs, or HIV-infected mothers is likely to improve vaccine outcomes in this setting.

2.
Open Forum Infect Dis ; 8(12): ofab571, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34988244

RESUMEN

BACKGROUND: Rhinoviruses (RVs) are ubiquitous pathogens and the principal etiological agents of common cold. Despite the high frequency of RV infections, data describing their long-term epidemiological patterns in a defined population remain limited. METHODS: Here, we analyzed 1070 VP4/VP2 genomic region sequences sampled at Kilifi County Hospital on the Kenya coast. The samples were collected between 2007 and 2018 from hospitalized pediatric patients (<60 months of age) with acute respiratory illness. RESULTS: Of 7231 children enrolled, RV was detected in 1497 (20.7%) and VP4/VP2 sequences were recovered from 1070 samples (71.5%). A total of 144 different RV types were identified (67 Rhinovirus A, 18 Rhinovirus B, and 59 Rhinovirus C) and at any month, several types co-circulated with alternating predominance. Within types, multiple genetically divergent variants were observed. Ongoing RV infections through time appeared to be a combination of (1) persistent types (observed up to 7 consecutive months), (2) reintroduced genetically distinct variants, and (3) new invasions (average of 8 new types annually). CONCLUSIONS: Sustained RV presence in the Kilifi community is mainly due to frequent invasion by new types and variants rather than continuous transmission of locally established types/variants.

3.
Wellcome Open Res ; 5: 162, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-35330938

RESUMEN

Background: The global COVID-19 outbreak relies on a quantitative real-time polymerase chain reaction (qRT-PCR) for the detection of severe acute respiratory syndrome coronavirus (SARS-CoV-2), to facilitate the roll-out of patient care and infection control measures. There are several qRT-PCR assays with little evidence on their comparability. We report alterations to the developers' recommendations to sustain the testing capability in our setting, where the supply of testing reagents is limited. Methods: Standards generated from a serially-diluted positive control and previously identified positive/negative samples were used to determine the optimal volumes of the qRT-PCR reagents and to evaluate the validity and performance of four assays: Charité Berlin and European Virus Archive - GLOBAL (EVAg) primer-probe sets, and DAAN and Beijing Genomics Institute (BGI) premixed commercial kits. A multiplex and singleplex RT-PCR kit was used with the two primer-probe sets and the recommended assay volumes of the two premixed kits were altered. Results: In comparison to the multiplex RT-PCR kit, the singleplex RT-PCR kit combined with the primer-probe sets yielded consistent cycle threshold (Ct) values across the different titrations tested. The DAAN premixed kit produced comparable Ct values across the titrations, while the BGI kit showed incomparable Ct values and inconsistent results between batches using the manufacturer's recommended volumes. Conclusion: We achieved a 2.5-fold and 4-fold increase in the number of tests/kit for the premixed kits and the primer-probe sets, respectively. The primer-probe set assays were reliable and consistent, and we preferred a combination of an EVAg and a Berlin target. Any inconclusive result was repeated by different individuals following the same protocol. DAAN was a consistent and reliable assay even at lower concentrations from the stated recommendations. BGI in contrast, required dilution to improve its performance and was hence an assay that was used in combination with EVAg or Berlin targets.

4.
Wellcome Open Res ; 5: 186, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33134555

RESUMEN

Background. International recommendations for the control of the coronavirus disease 2019 (COVID-19) pandemic emphasize the central role of laboratory testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent, at scale. The availability of testing reagents, laboratory equipment and qualified staff are important bottlenecks to achieving this. Elsewhere, pooled testing (i.e. combining multiple samples in the same reaction) has been suggested to increase testing capacities in the pandemic period. Methods. We discuss our experience with SARS-CoV-2 pooled testing using real-time reverse transcription polymerase chain reaction (RT-PCR) on the Kenyan Coast. Results. In mid-May, 2020, our RT-PCR testing capacity for SARS-CoV-2 was improved by ~100% as a result of adoption of a six-sample pooled testing strategy. This was accompanied with a concomitant saving of ~50% of SARS-CoV-2 laboratory test kits at both the RNA extraction and RT-PCR stages. However, pooled testing came with a slight decline of test sensitivity. The RT-PCR cycle threshold value (ΔCt) was ~1.59 higher for samples tested in pools compared to samples tested singly. Conclusions. Pooled testing is a useful strategy to increase SARS-CoV-2 laboratory testing capacity especially in low-income settings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA