Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Environ Sci Technol ; 58(8): 3942-3952, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38350647

RESUMEN

Aqueous film-forming foams (AFFFs) are used in firefighting applications and often contain per- and polyfluoroalkyl substances (PFAS), which can detrimentally impact environmental and biological health. Incineration is a potential disposal method for AFFFs, which may produce secondary PFAS and other air pollutants. We used online chemical ionization mass spectrometry (CIMS) to measure volatile PFAS emissions from incinerating AFFF concentrate solutions. We quantified perfluorinated carboxylic acids (PFCAs) during the incineration of legacy and contemporary AFFFs. These included trifluoroacetic acid, which reached mg m-3 quantities in the incinerator exhaust. These PFCAs likely arose as products of incomplete combustion of AFFF fluorosurfactants with lower peak furnace temperatures yielding higher PFCA concentrations. We also detected other short-chain PFAS, and other novel chemical products in AFFF combustion emissions. The volatile headspace above AFFF solutions contained larger (C ≥ 8), less oxidized PFAS detected by CIMS. We identified neutral PFAS resembling fluorotelomer surfactants (e.g., fluorotelomer sulfonamide alkylbetaines and fluorotelomer thioether amido sulfonates) and fluorotelomer alcohols in contemporary AFFF headspaces. Directly comparing the distinct chemical spaces of AFFF volatile headspace and combustion byproducts as measured by CIMS provides insight toward the chemistry of PFAS during thermal treatment of AFFFs.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Tensoactivos/análisis , Agua , Fluorocarburos/análisis , Ácidos Carboxílicos/análisis , Espectrometría de Masas
2.
Atmos Environ (1994) ; 259: 1-118538, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34385886

RESUMEN

This paper uses a machine learning model called a relevance vector machine (RVM) to quantify ozone (O3) and nitrogen oxides (NOx) formation under wintertime conditions. Field study measurements were based on previous work described by Olson et al. (2019), where continuous measurements were reported from a wintertime field study in Utah. RVMs were formulated using either O3 or nitrogen dioxide (NO2) as the output variable. Values of the correlation coefficient (r2) between predicted and measured concentrations were 0.944 for O3 and 0.931 for NO2. RVMs are constructed from the observed measurements and result in sparse model formulations, meaning that only a subset of the data is used to approximate the entire dataset. For this study, the RVM with O3 as the output variable used only 20% of the measurement data while the RVM with NO2 used 16%. RVMs were then used as a predictive model to assess the importance of individual precursors. Using O3 as the output variable, increases in three species resulted in increased O3 concentrations: hydrogen peroxide (H2O2), dinitrogen pentoxide (N2O5), and molecular chlorine (Cl2). For the two termination products measured during the study, nitric acid (HNO3) and formic acid (CH2O2), no change in O3 concentration was observed. Using NO2 as the output variable, only increases in N2O5 resulted in increased NO2 concentrations.

3.
Atmos Environ (1994) ; 244(1)2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33364911

RESUMEN

A series of chamber experiments was conducted to investigate the composition of secondary organic aerosol (SOA) following oxidation of a range of parent n-alkanes (C10-C17) in the presence of NO x . The relative contribution of selected species representing first, second, and higher generation products to SOA mass was measured using a high-resolution aerosol mass spectrometer. Gas chromatography was also used for a limited set of amenable species. Relative contributions varied substantially across the range of investigated alkanes reflecting slight changes in SOA composition. The contribution of first-generation cyclic hemiacetal is minimal toward the small end of the investigated range and gradually increase with n-alkane size. The relative contribution of second generation and higher nitrate-containing species, in contrast, decrease with an increased alkane size. A similar trend is observed for relative contribution of organonitrates to SOA. Finally, SOA yield and composition are sensitive to water vapor concentrations. This sensitivity is limited to a narrow range (dry to ~15% RH) with little, if any, impact above 15% suggesting that this impact may be negligible under ambient conditions. The impact of water vapor also appears to decrease with increasing alkane carbon number.

4.
Atmos Environ (1994) ; 2522021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33897265

RESUMEN

This research used data mining approaches to better understand factors affecting the formation of secondary organic aerosol (SOA). Although numerous laboratory and computational studies have been completed on SOA formation, it is still challenging to determine factors that most influence SOA formation. Experimental data were based on previous work described by Offenberg et al. (2017), where volume concentrations of SOA were measured in 139 laboratory experiments involving the oxidation of single hydrocarbons under different operating conditions. Three different data mining methods were used, including nearest neighbor, decision tree, and pattern mining. Both decision tree and pattern mining approaches identified similar chemical and experimental conditions that were important to SOA formation. Among these important factors included the number of methyl groups for the SOA precursor, the number of rings for the SOA precursor, and the presence of dinitrogen pentoxide (N2O5).

5.
Proc Natl Acad Sci U S A ; 115(9): 2038-2043, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29440409

RESUMEN

The chemical complexity of atmospheric organic aerosol (OA) has caused substantial uncertainties in understanding its origins and environmental impacts. Here, we provide constraints on OA origins through compositional characterization with molecular-level details. Our results suggest that secondary OA (SOA) from monoterpene oxidation accounts for approximately half of summertime fine OA in Centreville, AL, a forested area in the southeastern United States influenced by anthropogenic pollution. We find that different chemical processes involving nitrogen oxides, during days and nights, play a central role in determining the mass of monoterpene SOA produced. These findings elucidate the strong anthropogenic-biogenic interaction affecting ambient aerosol in the southeastern United States and point out the importance of reducing anthropogenic emissions, especially under a changing climate, where biogenic emissions will likely keep increasing.


Asunto(s)
Aerosoles/química , Contaminantes Atmosféricos/química , Monoterpenos/química , Estaciones del Año , Sudeste de Estados Unidos , Factores de Tiempo
6.
Atmos Environ (1994) ; 2232020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33424414

RESUMEN

Tracers of secondary organic aerosols (SOA) from thirteen aromatic hydrocarbons were quantified in laboratory smog chamber experiments. Class-specific SOA tracers emerged, including 2,3-dihydroxy-4-oxo-pentatonic acid (DHOPA) from monoaromatic volatile organic compounds (VOCs), phthalic acid from naphthalene and 1-methylnaphthalene, and methyl-nitrocatechol isomers from o,m,p-cresol oxidation. Organic carbon mass fractions (fSOC) for these and other tracers were determined and extend the SOA tracer method widely used to apportion biogenic SOC. The extended SOA tracer model was applied to evaluate the sources of SOC in Atlanta, GA during summer 2015 and winter 2016 after modifying the chamber-derived fSOC values to reflect SOA yields and local VOC levels (fSOC'). Monoaromatic, diaromatic, and cresol SOC contributed an average of 24%, 8%, and 0.12% of organic carbon (OC) mass during summer and 17%, 5%, and 0.27% during winter, respectively. Cresol SOC peaked during winter and was highly correlated with levoglucosan (r=0.83, p<0.001), consistent with it originating from biomass burning. Together, aromatic, biogenic, and biomass burning derived SOC accounted for an average of 77% and 28% of OC in summer and winter, respectively. The new understanding of SOA composition from aromatic VOCs advances the tracer-based method by including important precursors of SOC and enables a better understanding of the sources of atmospheric aerosol.

7.
Atmos Environ (1994) ; 218: 1-116988, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31666799

RESUMEN

Concentrations of 11 species are reported from continuous measurements taken during a wintertime field study in Utah. Time series data for measured species generally displayed strong diurnal patterns. Six species show a diurnal pattern of daytime maximums (NO, NOy, O3, H2O2, CH2O2, and Cl2), while five species show a diurnal pattern of night time maximums (NO2, HONO, ClNO2, HNO3, and N2O5). Vector autoregression analyses were completed to better understand important species influencing the formation of O3 and NOx. For the species studied, r2 values of predicted versus measured concentrations ranged from 0.82-0.99. Fitting parameters for the autoregressive matrix, Π, indicated the importance of species precursors. In addition, values of fitting parameters for Π were relatively insensitive to data size, with variations generally <10%. Variable causation was quantified using the Granger causation method. Assuming O3 and NOx behave as chemical products, reactants (in order of importance) are as follows: H2O2, N2O5, HONO, and ClNO2.

8.
Environ Sci Technol ; 52(5): 3037-3044, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29381868

RESUMEN

The production of photochemical atmospheres under controlled conditions in an irradiation chamber permits the manipulation of parameters that influence the resulting air-pollutant chemistry and potential biological effects. To date, no studies have examined how contrasting atmospheres with a similar Air Quality Health Index (AQHI), but with differing ratios of criteria air pollutants, might differentially affect health end points. Here, we produced two atmospheres with similar AQHIs based on the final concentrations of ozone, nitrogen dioxide, and particulate matter (PM2.5). One simulated atmosphere (SA-PM) generated from irradiation of ∼23 ppmC gasoline, 5 ppmC α-pinene, 529 ppb NO, and 3 µg m-3 (NH4)2SO4 as a seed resulted in an average of 976 µg m-3 PM2.5, 326 ppb NO2, and 141 ppb O3 (AQHI 97.7). The other atmosphere (SA-O3) generated from 8 ppmC gasoline, 5 ppmC isoprene, 874 ppb NO, and 2 µg m-3 (NH4)2SO4 resulted in an average of 55 µg m-3 PM2.5, 643 ppb NO2, and 430 ppb O3 (AQHI of 99.8). Chemical speciation by gas chromatography showed that photo-oxidation degraded the organic precursors and promoted the de novo formation of secondary reaction products such as formaldehyde and acrolein. Further work in accompanying papers describe toxicological outcomes from the two distinct photochemical atmospheres.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Dióxido de Nitrógeno , Material Particulado
9.
Atmos Environ (1994) ; 178: 164-172, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29725240

RESUMEN

Although many volatile organic compounds (VOCs) are regulated to limit air pollution and the consequent health effects, the photooxidation products generally are not. Thus, we examined the mutagenicity in Salmonella TA100 of photochemical atmospheres generated in a steady-state atmospheric simulation chamber by irradiating mixtures of single aromatic VOCs, NOx, and ammonium sulfate seed aerosol in air. The 10 VOCs examined were benzene; toluene; ethylbenzene; o-, m-, and p-xylene; 1,2,4- and 1,3,5-trimethylbenzene; m-cresol; and naphthalene. Salmonella were exposed at the air-agar interface to the generated atmospheres for 1, 2, 4, 8, or 16 h. Dark-control exposures produced non-mutagenic atmospheres, illustrating that the gas-phase precursor VOCs were not mutagenic at the concentrations tested. Under irradiation, all but m-cresol and naphthalene produced mutagenic atmospheres, with potencies ranging from 2.0 (p-xylene) to 10.4 (ethylbenzene) revertants m3 mgC-1 h-1. The mutagenicity was due exclusively to direct-acting late-generation products of the photooxidation reactions. Gas-phase chemical analysis showed that a number of oxidized organic chemical species enhanced during the irradiated exposure experiments correlated (r ≥ 0.81) with the mutagenic potencies of the atmospheres. Molecular formulas assigned to these species indicated that they likely contained peroxy acid, aldehyde, alcohol, and other functionalities.

10.
Environ Sci Technol ; 51(17): 9911-9919, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28796509

RESUMEN

Volume concentrations of secondary organic aerosol (SOA) are measured in 139 steady-state, single precursor hydrocarbon oxidation experiments after passing through a temperature controlled inlet. The response to change in temperature is well predicted through a feedforward Artificial Neural Network. The most parsimonious model, as indicated by Akaike's Information Criterion, Corrected (AIC,C), utilizes 11 input variables, a single hidden layer of 4 tanh activation function nodes, and a single linear output function. This model predicts thermal behavior of single precursor aerosols to less than ±5%, which is within the measurement uncertainty, while limiting the problem of overfitting. Prediction of thermal behavior of SOA can be achieved by a concise number of descriptors of the precursor hydrocarbon including the number of internal and external double bonds, number of methyl- and ethyl- functional groups, molecular weight, and number of ring structures, in addition to the volume of SOA formed, and an indicator of which of four oxidant precursors was used to initiate reactions (NOx photo-oxidation, photolysis of H2O2, ozonolysis, or thermal decomposition of N2O5). Additional input variables, such as chamber volumetric residence time, relative humidity, initial concentration of oxides of nitrogen, reacted hydrocarbon concentration, and further descriptors of the precursor hydrocarbon, including carbon number, number of oxygen atoms, and number of aromatic ring structures, lead to over fit models, and are unnecessary for an efficient, accurate predictive model of thermal behavior of SOA. This work indicates that predictive statistical modeling methods may be complementary to descriptive techniques for use in parametrization of air quality models.


Asunto(s)
Aerosoles , Peróxido de Hidrógeno , Oxígeno , Contaminantes Atmosféricos , Carbono , Oxidación-Reducción
11.
Atmos Environ (1994) ; 169: 175-192, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29681758

RESUMEN

Atmospheric oxidation of sesquiterpenes has been of considerable interest recently because of their likely contribution to ambient organic aerosol, but farnesene oxidation has been reported in only a few studies and with limited data. In the present study, a detailed chemical analysis of the organic fraction of gas and particle phases originating from the ozonolysis of a mixture of α-farnesene and ß-farnesene was carried out in a 14.5 m3 smog chamber. More than 80 organic compounds bearing OH functionality were detected for the first time in this system in the gas and particle phases. The major secondary organic aerosol (SOA) components included conjugated α-farnesene trienols, hydroxyl carboxylic acid and its corresponding lactones, C3-C7 linear dicarboxylic acids, and hydroxy/carbonyl/carboxylic compounds. Of particular importance was 5,6-dihydroxy-6-methylheptan-2-one (DHMHO), which was detected at high concentration. In the gas phase, the main species identified were trienols and their corresponding epoxides and diepoxides. Proposed reaction schemes are provided for selected compounds. A similar analysis was performed for ambient PM2.5 samples collected during summer 2013 as part of the SOAS to determine farnesene contributions to PM2.5. Gas chromatography-mass spectrometry analysis were consistent with the occurrence of several farnesene SOA compounds, indicating the potential impact of farnesene on the regional aerosol burden. The high abundance of DHMHO in chamber SOA and its presence in ambient PM2.5 is particularly important because to our knowledge it is specific to farnesene and therefore could serve as an indicator for farnesene emitted into ambient aerosol. In the absence of authentic standards, however, it is difficult to accurately quantify the contribution of SOA originating from farnesene to ambient PM2.5.

12.
Atmos Environ (1994) ; 166: 204-214, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29681757

RESUMEN

The present study investigates primary and secondary sources of organic carbon for Bakersfield, CA, USA as part of the 2010 CalNex study. The method used here involves integrated sampling that is designed to allow for detailed and specific chemical analysis of particulate matter (PM) in the Bakersfield airshed. To achieve this objective, filter samples were taken during thirty-four 23-hr periods between 19 May and 26 June 2010 and analyzed for organic tracers by gas chromatography - mass spectrometry (GC-MS). Contributions to organic carbon (OC) were determined by two organic tracer-based techniques: primary OC by chemical mass balance and secondary OC by a mass fraction method. Radiocarbon (14C) measurements of the total organic carbon were also made to determine the split between the modern and fossil carbon and thereby constrain unknown sources of OC not accounted for by either tracer-based attribution technique. From the analysis, OC contributions from four primary sources and four secondary sources were determined, which comprised three sources of modern carbon and five sources of fossil carbon. The major primary sources of OC were from vegetative detritus (9.8%), diesel (2.3%), gasoline (<1.0%), and lubricating oil impacted motor vehicle exhaust (30%); measured secondary sources resulted from isoprene (1.5%), α-pinene (<1.0%), toluene (<1.0%), and naphthalene (<1.0%, as an upper limit) contributions. The average observed organic carbon (OC) was 6.42 ± 2.33 µgC m-3. The 14C derived apportionment indicated that modern and fossil components were nearly equivalent on average; however, the fossil contribution ranged from 32-66% over the five week campaign. With the fossil primary and secondary sources aggregated, only 25% of the fossil organic carbon could not be attributed. Whereas, nearly 80% of the modern carbon could not be attributed to primary and secondary sources accessible to this analysis, which included tracers of biomass burning, vegetative detritus and secondary biogenic carbon. The results of the current study contributes source-based evaluation of the carbonaceous aerosol at CalNex Bakersfield.

13.
Environ Sci Technol ; 48(9): 4901-8, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24697354

RESUMEN

An oxygenated MW 188 compound is commonly observed in substantial abundance in atmospheric aerosol samples and was proposed in previous studies as an α-pinene-related marker compound that is associated with aging processes. Owing to difficulties in producing this compound in sufficient amounts in laboratory studies and the occurrence of isobaric isomers, a complete assignment for individual MW 188 compounds could not be achieved in these studies. Results from a comprehensive mass spectrometric analysis are presented here to corroborate the proposed structure of the most abundant MW 188 compound as a 2-hydroxyterpenylic acid diastereoisomer with 2R,3R configuration. The application of collision-induced dissociation with liquid chromatography/electrospray ionization-ion trap mass spectrometry in both negative and positive ion modes, as well as chemical derivatization to methyl ester derivatives and analysis by the latter technique and gas chromatography/electron ionization mass spectrometry, enabled a comprehensive characterization of MW 188 isomers, including a detailed study of the fragmentation behavior using both mass spectrometric techniques. Furthermore, a MW 188 positional isomer, 4-hydroxyterpenylic acid, was tentatively identified, which also is of atmospheric relevance as it could be detected in ambient fine aerosol. Quantum chemical calculations were performed to support the diastereoisomeric assignment of the 2-hydroxyterpenylic acid isomers. Results from a time-resolved α-pinene photooxidation experiment show that the 2-hydroxyterpenylic acid 2R,3R diastereoisomer has a time profile distinctly different from that of 3-methyl-1,2,3-butanetricarboxylic acid, a marker for oxygenated (aged) secondary organic aerosol. This study presents a comprehensive chemical data set for a more complete structural characterization of hydroxyterpenylic acids in ambient fine aerosol, which sets the foundation to better understand the atmospheric fate of α-pinene in future studies.


Asunto(s)
4-Butirolactona/análogos & derivados , Acetatos/química , Monoterpenos/química , Oxígeno/química , 4-Butirolactona/química , Aerosoles , Contaminantes Atmosféricos/análisis , Monoterpenos Bicíclicos , Cromatografía Liquida , Cromatografía de Gases y Espectrometría de Masas , Peso Molecular , Monoterpenos/análisis , Espectrometría de Masa por Ionización de Electrospray , Estereoisomerismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-38905230

RESUMEN

Real-time measurements of short-chain (C < 8) per- and polyfluoroalkyl substances (PFAS) were performed in Central New Jersey air using chemical ionization mass spectrometry (CIMS). The CIMS was calibrated for C2 - C6 perfluorinated carboxylic acids, and 4:2 and 6:2 fluorotelomer alcohols. Of these, only trifluoroacetic acid (TFA) was detected in ambient air above instrumental detection limits. However, instrumental sensitivities (and thus ambient mixing ratios) were estimated for other detected PFAS including C3H2F6O and C6HF11O3. TFA mixing ratios reached up to 0.7 parts-per-trillion by volume (pptv). Estimated C3H2F6O and C6HF11O3 mixing ratios reached the single pptv level. These latter two formulas are consistent with hexafluoroisopropanol (HFIP) and hexafluoropropylene oxide dimer acid (HFPO-DA) respectively, though they may potentially represent multiple isomers. Diel profiles of detected PFAS, along with local meteorological data can provide information on potential local sources of these compounds. However, only limited discussion of potential sources was provided here given the sparse detection of these compounds above instrument detection limits. These results demonstrate the potential of online CIMS instrumentation for measuring certain PFAS in ambient outdoor air in real time at or below the pptv level. This technique also has potential for fenceline monitoring and other near-source applications.Implications: Online chemical ionization mass spectrometry (CIMS) has potential for fast, real-time measurements of certain airborne per- and polyfluoroalkyl substances (PFAS). Three short-chain (C < 8) PFAS were detected by CIMS in Central New Jersey ambient air near or above the parts-per-trillion by volume (pptv) level. This technique also has potential for fenceline monitoring and other near-source applications for airborne PFAS.

15.
Environ Sci Technol ; 47(19): 11056-64, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24024583

RESUMEN

Isoprene significantly contributes to organic aerosol in the southeastern United States where biogenic hydrocarbons mix with anthropogenic emissions. In this work, the Community Multiscale Air Quality model is updated to predict isoprene aerosol from epoxides produced under both high- and low-NOx conditions. The new aqueous aerosol pathways allow for explicit predictions of two key isoprene-derived species, 2-methyltetrols and 2-methylglyceric acid, that are more consistent with observations than estimates based on semivolatile partitioning. The new mechanism represents a significant source of organic carbon in the lower 2 km of the atmosphere and captures the abundance of 2-methyltetrols relative to organosulfates during the simulation period. For the parametrization considered here, a 25% reduction in SOx emissions effectively reduces isoprene aerosol, while a similar reduction in NOx leads to small increases in isoprene aerosol.


Asunto(s)
Contaminantes Atmosféricos/química , Butadienos/química , Compuestos Epoxi/química , Hemiterpenos/química , Modelos Teóricos , Pentanos/química , Aerosoles , Ácidos Glicéricos/química , Nitratos/química , Compuestos de Azufre/química
16.
J Air Waste Manag Assoc ; 73(5): 335-344, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36803440

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants associated with negative health impacts. Assessments of tubing-related measurement bias for volatile PFAS are lacking, as gas-wall interactions with tubing can delay quantification of gas-phase analytes. We use online iodide chemical ionization mass spectrometry measurements to characterize tubing delays for three gas-phase oxygenated PFAS - 4:2 fluorotelomer alcohol (4:2 FTOH), perfluorobutanoic acid (PFBA), and hexafluoropropylene oxide dimer acid (HFPO-DA). Perfluoroalkoxy alkane and high-density polyethylene tubing yielded relatively short absorptive measurement delays, with no clear dependence on tubing temperature or sampled humidity. Sampling through stainless steel tubing led to prolonged measurement delays due to reversible adsorption of PFAS to the tubing surface, with strong dependence on tubing temperature and sample humidification. Silcosteel tubing afforded shorter measurement delays than stainless steel due to diminished surface adsorption of PFAS. Characterizing and mitigating these tubing delays is crucial for reliable quantification of airborne PFAS.Implications: Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants. Many PFAS are sufficiently volatile to exist as airborne pollutants. Measurements and quantification of airborne PFAS can be biased from material-dependent gas-wall interactions with sampling inlet tubing. Thus, characterizing these gas-wall interactions are crucial for reliably investigating emissions, environmental transport, and fates of airborne PFAS.


Asunto(s)
Contaminantes Ambientales , Fluorocarburos , Contaminantes Químicos del Agua , Acero Inoxidable/análisis , Fluorocarburos/análisis , Fluorocarburos/química , Contaminantes Ambientales/análisis , Alcanos/análisis , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis
17.
Environ Sci Technol ; 46(17): 9437-46, 2012 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-22849588

RESUMEN

2-Methyl-3-buten-2-ol (MBO) is an important biogenic volatile organic compound (BVOC) emitted by pine trees and a potential precursor of atmospheric secondary organic aerosol (SOA) in forested regions. In the present study, hydroxyl radical (OH)-initiated oxidation of MBO was examined in smog chambers under varied initial nitric oxide (NO) and aerosol acidity levels. Results indicate measurable SOA from MBO under low-NO conditions. Moreover, increasing aerosol acidity was found to enhance MBO SOA. Chemical characterization of laboratory-generated MBO SOA reveals that an organosulfate species (C(5)H(12)O(6)S, MW 200) formed and was substantially enhanced with elevated aerosol acidity. Ambient fine aerosol (PM(2.5)) samples collected from the BEARPEX campaign during 2007 and 2009, as well as from the BEACHON-RoMBAS campaign during 2011, were also analyzed. The MBO-derived organosulfate characterized from laboratory-generated aerosol was observed in PM(2.5) collected from these campaigns, demonstrating that it is a molecular tracer for MBO-initiated SOA in the atmosphere. Furthermore, mass concentrations of the MBO-derived organosulfate are well correlated with MBO mixing ratio, temperature, and acidity in the field campaigns. Importantly, this compound accounted for an average of 0.25% and as high as 1% of the total organic aerosol mass during BEARPEX 2009. An epoxide intermediate generated under low-NO conditions is tentatively proposed to produce MBO SOA.


Asunto(s)
Aerosoles/química , Contaminantes Atmosféricos/química , Atmósfera/química , Pentanoles/química , Ésteres del Ácido Sulfúrico/química , Compuestos Orgánicos Volátiles/química , Radical Hidroxilo/química , Óxido Nítrico/química , Oxidantes Fotoquímicos/química , Oxidación-Reducción , Pinus/química
18.
Environ Pollut ; 301: 119010, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35217136

RESUMEN

Nitrophenols (NPs) are hazardous pollutants found in various environmental matrices, including ambient fine particulate matter (PM2.5), agricultural residues, rainwater, wildfires, and industrial wastes. This study showed for the first time the effect of three pure nitrophenols and their mixture on human lung cells to provide basic understanding of the NP influence on cell elements and processes. We identified NPs in ambient PM2.5 and secondary organic aerosol (SOA) particles generated from the photooxidation of monocyclic aromatic hydrocarbons in the U.S. EPA smog chamber. We assessed the toxicity of identified NPs and their equimolar mixture in normal bronchial epithelial (BEAS-2B) and alveolar epithelial cancer (A549) lung cell lines. The inhibitory concentration-50 (IC50) values were highest and lowest in BEAS-2B cells treated with 2-nitrophenol (2NP) and 4-nitrophenol (4NP), respectively, at 24 h of exposure. The lactate dehydrogenase (LDH) assay showed that 4NP, the most abundant NP we identified in PM2.5, was the most cytotoxic NP examined in both cell lines. The annexin-V/fluorescein isothiocyanate (FITC) analysis showed that the populations of late apoptotic/necrotic BEAS-2B and A549 cells exposed to 3NP, 4NP, and NP equimolar mixture increased between 24 and 48 h. Cellular reactive oxygen species (ROS) buildup led to cellular death post exposure to 3NP, 4NP and the NP mixtures, while 2NP induced the lowest ROS buildup. An increased mitochondrial ROS signal following NP exposure occurred only in BEAS-2B cells. The tetramethylrhodamine, methyl ester, perchlorate (TMRM) assay showed that exposed cells exhibited collapse of the mitochondrial membrane potential. TMRM signals decreased significantly only in BEAS-2B cells, and most strongly with 4NP exposures. Our results suggest that acute atmospheric exposures to NPs may be toxic at high concentrations, but not at ambient PM2.5 concentrations. Further chronic studies with NP and NP-containing PM2.5 are warranted to assess their contribution to lung pathologies.


Asunto(s)
Contaminantes Atmosféricos , Células Epiteliales , Contaminantes Atmosféricos/análisis , Humanos , Pulmón , Nitrofenoles/metabolismo , Estrés Oxidativo , Material Particulado/análisis
19.
J Air Waste Manag Assoc ; 60(11): 1388-99, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21141432

RESUMEN

Chemical tracer methods for determining contributions to primary organic aerosol (POA) are fairly well established, whereas similar techniques for secondary organic aerosol (SOA), inherently complicated by time-dependent atmospheric processes, are only beginning to be studied. Laboratory chamber experiments provide insights into the precursors of SOA, but field data must be used to test the approaches. This study investigates primary and secondary sources of organic carbon (OC) and determines their mass contribution to particulate matter 2.5 microm or less in aerodynamic diameter (PM2.5) in Southeastern Aerosol Research and Characterization (SEARCH) network samples. Filter samples were taken during 20 24-hr periods between May and August 2005 at SEARCH sites in Atlanta, GA (JST); Birmingham, AL (BHM); Centerville, AL (CTR); and Pensacola, FL (PNS) and analyzed for organic tracers by gas chromatography-mass spectrometry. Contribution to primary OC was made using a chemical mass balance method and to secondary OC using a mass fraction method. Aerosol masses were reconstructed from the contributions of POA, SOA, elemental carbon, inorganic ions (sulfate [SO4(2-)], nitrate [NO3-], ammonium [NH4+]), metals, and metal oxides and compared with the measured PM2.5. From the analysis, OC contributions from seven primary sources and four secondary sources were determined. The major primary sources of carbon were from wood combustion, diesel and gasoline exhaust, and meat cooking; major secondary sources were from isoprene and monoterpenes with minor contributions from toluene and beta-caryophyllene SOA. Mass concentrations at the four sites were determined using source-specific organic mass (OM)-to-OC ratios and gave values in the range of 12-42 microg m(-3). Reconstructed masses at three of the sites (JST, CTR, PNS) ranged from 87 to 91% of the measured PM2.5 mass. The reconstructed mass at the BHM site exceeded the measured mass by approximately 25%. The difference between the reconstructed and measured PM2.5 mass for nonindustrial areas is consistent with not including aerosol liquid water or other sources of organic aerosol.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Monitoreo del Ambiente/métodos , Compuestos Orgánicos/análisis , Material Particulado/análisis , Aerosoles/análisis , Contaminantes Ocupacionales del Aire/química , Material Particulado/química , Estados Unidos , United States Environmental Protection Agency
20.
Environ Sci Technol Lett ; 6(5): 289-293, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31179348

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are incorporated into an ever-increasing number of modern products and inevitably enter the environment and ultimately human bodies. Herein, we show that chemical ionization mass spectrometry with iodide reagent ion chemistry is a useful technique for the detection of fluorotelomer alcohols (FTOHs) and other oxygenated PFAS, including per- and polyfluoro carboxylic acids such as hexafluoropropylene oxide dimer acid. This technique offers direct, high-time resolution measurement capability with parts per trillion by volume (nanograms per cubic meter) gas-phase detection limits. Measurements were taken by direct volatilization of samples without prior processing, allowing for fast measurements and reduced sample treatment compared to established PFAS methods. We demonstrate the utility of this technique by sampling volatile and semivolatile PFAS from fluoro additives and fluoro products to quantify levels of FTOHs and identify additional fluorinated compounds for which standards were unavailable.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA