Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 88(23): e0143722, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36374088

RESUMEN

Over the last 4 decades, the rate of discovery of novel antibiotics has decreased drastically, ending the era of fortuitous antibiotic discovery. A better understanding of the biology of bacteriogenic toxins potentially helps to prospect for new antibiotics. To initiate this line of research, we quantified antagonists from two different sites at two different depths of soil and found the relative number of antagonists to correlate with the bacterial load and carbon-to-nitrogen (C/N) ratio of the soil. Consecutive studies show the importance of antagonist interactions between soil isolates and the lack of a predicted role for nutrient availability and, therefore, support an in situ role in offense for the production of toxins in environments of high bacterial loads. In addition, the production of extracellular DNAses (exDNases) and the ability to antagonize correlate strongly. Using an in domum-developed probabilistic cellular automaton model, we studied the consequences of exDNase production for both coexistence and diversity within a dynamic equilibrium. Our model demonstrates that exDNase-producing isolates involved in amensal interactions act to stabilize a community, leading to increased coexistence within a competitor-sensing interference competition environment. Our results signify that the environmental and biological cues that control natural-product formation are important for understanding antagonism and community dynamics, structure, and function, permitting the development of directed searches and the use of these insights for drug discovery. IMPORTANCE Ever since the first observation of antagonism by microorganisms by Ernest Duchesne (E. Duchesne, Contribution à l'étude de la concurrence vitale chez les microorganisms. Antagonism entre les moisissures et les microbes, These pour obtenir le grade de docteur en medicine, Lyon, France, 1897), many scientists successfully identified and applied bacteriogenic bioactive compounds from soils to cure infection. Unfortunately, overuse of antibiotics and the emergence of clinical antibiotic resistance, combined with a lack of discovery, have hampered our ability to combat infections. A deeper understanding of the biology of toxins and the cues leading to their production may elevate the success rate of the much-needed discovery of novel antibiotics. We initiated this line of research and discovered that bacterial reciprocal antagonism is associated with exDNase production in isolates from environments with high bacterial loads, while diversity may increase in environments of lower bacterial loads.


Asunto(s)
Antibacterianos , Desoxirribonucleasas , Antibacterianos/farmacología , Suelo , Francia
2.
Reprod Biol Endocrinol ; 9: 11, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21255406

RESUMEN

BACKGROUND: The African clawed frog, Xenopus laevis, is widely used in studies of oogenesis, meiotic cell cycle and early embryonic development. However, in order to perform such studies, eggs are normally collected after the injection of hCG into the dorsal lymph sac of fully-grown female frogs following pre-injection of PMSF. Although this protocol is established and used as standard laboratory approach, there are some concerns over whether the injections could cause the transmission of deleterious microorganisms. Moreover, these injection protocols require a competent skilled worker to carry out the procedure efficiently. METHODS: Recently, we established a novel method to induce fish ovulation by simply adding the natural maturation-inducing hormone of teleosts, 17 alpha, 20 beta-dihydroxy-4-pregnen-3-one (17,20 beta-DHP), into the surrounding water. In the present study, we demonstrate how we can induce ovulation in frogs using the same methodology. RESULTS: In frogs, progesterone was effective in the induction of oocyte maturation in vitro. We then examined the ability of progesterone to induce ovulation in frogs. However treatment of frogs with progesterone alone only occasionally induced ovulation in vivo. The number of oocytes and the frequency of ovulation were significantly lower than that induced by hCG-injection. Thus, conditions were improved by using a combination of progesterone with estradiol and by pre-treating frogs with low concentrations of progesterone or estradiol. Finally, we established an efficient means of inducing ovulation in frogs which involved pre-treatment of frogs with salt solution followed by a mixture of estradiol and progesterone at high concentration. The frequency and numbers of oocytes obtained were identical to those resulting from PMSG-hCG induction. Fertilization rate of eggs ovulated by the new treatment method was comparable to eggs obtained by hCG-injection and juveniles developed normally. CONCLUSIONS: To conclude, we have successfully developed a novel method to induce ovulation in frogs but without the need for a potentially harmful injection strategy.


Asunto(s)
Inducción de la Ovulación/métodos , Xenopus laevis , Animales , Gonadotropina Coriónica/farmacología , Estradiol/farmacología , Femenino , Ovulación/efectos de los fármacos , Progesterona/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA