Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 20(6): e1011317, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38843312

RESUMEN

Evaluation of the apportionment of genetic diversity of human bacterial commensals within and between human populations is an important step in the characterization of their evolutionary potential. Recent studies showed a correlation between the genomic diversity of human commensal strains and that of their host, but the strength of this correlation and of the geographic structure among human populations is a matter of debate. Here, we studied the genomic diversity and evolution of the phylogenetically related oro-nasopharyngeal healthy-carriage Streptococcus mitis and Streptococcus pneumoniae, whose lifestyles range from stricter commensalism to high pathogenic potential. A total of 119 S. mitis genomes showed higher within- and among-host variation than 810 S. pneumoniae genomes in European, East Asian and African populations. Summary statistics of the site-frequency spectrum for synonymous and non-synonymous variation and ABC modelling showed this difference to be due to higher ancestral bacterial population effective size (Ne) in S. mitis, whose genomic variation has been maintained close to mutation-drift equilibrium across (at least many) generations, whereas S. pneumoniae has been expanding from a smaller ancestral bacterial population. Strikingly, both species show limited differentiation among human populations. As genetic differentiation is inversely proportional to the product of effective population size and migration rate (Nem), we argue that large Ne have led to similar differentiation patterns, even if m is very low for S. mitis. We conclude that more diversity within than among human populations and limited population differentiation must be common features of the human microbiome due to large Ne.


Asunto(s)
Evolución Molecular , Variación Genética , Genoma Bacteriano , Streptococcus mitis , Streptococcus pneumoniae , Streptococcus mitis/genética , Humanos , Streptococcus pneumoniae/genética , Filogenia , Genética de Población
2.
Nucleic Acids Res ; 51(19): 10375-10394, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37757859

RESUMEN

Despite enabling Streptococcus pneumoniae to acquire antibiotic resistance and evade vaccine-induced immunity, transformation occurs at variable rates across pneumococci. Phase variants of isolate RMV7, distinguished by altered methylation patterns driven by the translocating variable restriction-modification (tvr) locus, differed significantly in their transformation efficiencies and biofilm thicknesses. These differences were replicated when the corresponding tvr alleles were introduced into an RMV7 derivative lacking the locus. RNA-seq identified differential expression of the type 1 pilus, causing the variation in biofilm formation, and inhibition of competence induction in the less transformable variant, RMV7domi. This was partly attributable to RMV7domi's lower expression of ManLMN, which promoted competence induction through importing N-acetylglucosamine. This effect was potentiated by analogues of some proteobacterial competence regulatory machinery. Additionally, one of RMV7domi's phage-related chromosomal island was relatively active, which inhibited transformation by increasing expression of the stress response proteins ClpP and HrcA. However, HrcA increased competence induction in the other variant, with its effects depending on Ca2+ supplementation and heat shock. Hence the heterogeneity in transformation efficiency likely reflects the diverse signalling pathways by which it is affected. This regulatory complexity will modulate population-wide responses to synchronising quorum sensing signals to produce co-ordinated yet stochastic bet hedging behaviour.


Asunto(s)
Proteínas Bacterianas , Streptococcus pneumoniae , Proteínas Bacterianas/metabolismo , Biopelículas , Proteínas de Choque Térmico/metabolismo , Percepción de Quorum , Streptococcus pneumoniae/metabolismo
3.
Microbiology (Reading) ; 168(12)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36748691

RESUMEN

Streptococcus pneumoniae may inhabit the upper respiratory tract of humans without causing harm but it also causes diseases with high morbidity and mortality. It has excellent adaptive capabilities thanks to its ability to shuffle its genetic content by acquiring and incorporating DNA from other bacteria and is highly competent for genetic transformation. Sugar sensing, cleavage and transport ensure its fitness and survival in the host, and intracellular survival in macrophages has been linked to virulence. The polysaccharide capsule and toxin pneumolysin are the most important virulence determinants. Polysaccharide-based vaccines provide protection against the serotypes represented in vaccine formulations.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Humanos , Streptococcus pneumoniae/genética , Infecciones Neumocócicas/microbiología , Estrés Financiero , Factores de Virulencia , Virulencia
4.
Nucleic Acids Res ; 48(20): 11468-11485, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33119758

RESUMEN

Type I restriction-modification (R-M) systems consist of a DNA endonuclease (HsdR, HsdM and HsdS subunits) and methyltransferase (HsdM and HsdS subunits). The hsdS sequences flanked by inverted repeats (referred to as epigenetic invertons) in certain Type I R-M systems undergo invertase-catalyzed inversions. Previous studies in Streptococcus pneumoniae have shown that hsdS inversions within clonal populations produce subpopulations with profound differences in the methylome, cellular physiology and virulence. In this study, we bioinformatically identified six major clades of the tyrosine and serine family invertases homologs from 16 bacterial phyla, which potentially catalyze hsdS inversions in the epigenetic invertons. In particular, the epigenetic invertons are highly enriched in host-associated bacteria. We further verified hsdS inversions in the Type I R-M systems of four representative host-associated bacteria and found that each of the resultant hsdS allelic variants specifies methylation of a unique DNA sequence. In addition, transcriptome analysis revealed that hsdS allelic variations in Enterococcus faecalis exert significant impact on gene expression. These findings indicate that epigenetic switches driven by invertases in the epigenetic invertons broadly operate in the host-associated bacteria, which may broadly contribute to bacterial host adaptation and virulence beyond the role of the Type I R-M systems against phage infection.


Asunto(s)
Proteínas Bacterianas/genética , Enzimas de Restricción-Modificación del ADN/genética , Epigénesis Genética , Regulación Bacteriana de la Expresión Génica , Bacteroides fragilis/genética , Metilación de ADN , ADN Bacteriano/química , Enterococcus faecalis/genética , Secuencias Invertidas Repetidas , Streptococcus agalactiae/genética , Treponema denticola/genética
5.
Mol Microbiol ; 113(3): 672-681, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32185830

RESUMEN

Bottlenecks reduce the size of the gene pool within populations of all life forms with implications for their subsequent survival. Here, we examine the effects of bottlenecks on bacterial commensal-pathogens during transmission between, and dissemination within, hosts. By reducing genetic diversity, bottlenecks may alter individual or population-wide adaptive potential. A diverse range of hypermutable mechanisms have evolved in infectious agents that allow for rapid generation of genetic diversity in specific genomic loci as opposed to the variability arising from increased genome-wide mutation rates. These localised hypermutable mechanisms include multi-gene phase variation (PV) of outer membrane components, multi-allele PV of restriction systems and recombination-driven antigenic variation. We review selected experimental and theoretical (mathematical) models pertaining to the hypothesis that localised hypermutation (LH) compensates for fitness losses caused by bottlenecks and discuss whether bottlenecks have driven the evolution of hypermutable loci.


Asunto(s)
Bacterias/genética , Variación Genética/genética , Interacciones Huésped-Patógeno/genética , Variación Antigénica , Evolución Biológica , Evolución Molecular , Pool de Genes , Modelos Genéticos , Mutación , Recombinación Genética/genética , Selección Genética/genética
6.
Am J Respir Crit Care Med ; 201(3): 335-347, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31626559

RESUMEN

Rationale: Pneumococcal pneumonia remains a global health problem. Colonization of the nasopharynx with Streptococcus pneumoniae (Spn), although a prerequisite of infection, is the main source of exposure and immunological boosting in children and adults. However, our knowledge of how nasal colonization impacts on the lung cells, especially on the predominant alveolar macrophage (AM) population, is limited.Objectives: Using a controlled human infection model to achieve nasal colonization with 6B serotype, we investigated the effect of Spn colonization on lung cells.Methods: We collected BAL from healthy pneumococcal-challenged participants aged 18-49 years. Confocal microscopy and molecular and classical microbiology were used to investigate microaspiration and pneumococcal presence in the lower airways. AM opsonophagocytic capacity was assessed by functional assays in vitro, whereas flow cytometry and transcriptomic analysis were used to assess further changes on the lung cellular populations.Measurements and Main Results: AMs from Spn-colonized individuals exhibited increased opsonophagocytosis to pneumococcus (11.4% median increase) for approximately 3 months after experimental pneumococcal colonization. AMs also had increased responses against other bacterial pathogens. Pneumococcal DNA detected in the BAL samples of Spn-colonized individuals were positively correlated with nasal pneumococcal density (r = 0.71; P = 0.029). Similarly, AM-heightened opsonophagocytic capacity was correlated with nasopharyngeal pneumococcal density (r = 0.61, P = 0.025).Conclusions: Our findings demonstrate that nasal colonization with pneumococcus and microaspiration prime AMs, leading to brisker responsiveness to both pneumococcus and unrelated bacterial pathogens. The relative abundance of AMs in the alveolar spaces, alongside their potential for nonspecific protection, render them an attractive target for novel vaccines.


Asunto(s)
Macrófagos Alveolares/inmunología , Nasofaringe/microbiología , Nariz/microbiología , Streptococcus pneumoniae/aislamiento & purificación , Adolescente , Adulto , Bacterias/inmunología , Humanos , Persona de Mediana Edad , Aspiración Respiratoria , Adulto Joven
7.
Thorax ; 75(1): 8-16, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31699806

RESUMEN

BACKGROUND: Antibiotic resistance is a major global threat. We hypothesised that the chronic obstructive pulmonary disease (COPD) airway is a reservoir of antimicrobial resistance genes (ARGs) that associate with microbiome-specific COPD subgroups. OBJECTIVE: To determine the resistance gene profiles in respiratory samples from COPD patients and healthy volunteers. METHODS: Quantitative PCR targeting 279 specific ARGs was used to profile the resistomes in sputum from subjects with COPD at stable, exacerbation and recovery visits (n=55; COPD-BEAT study), healthy controls with (n=7) or without (n=22) exposure to antibiotics in the preceding 12 months (EXCEED study) and in bronchial brush samples from COPD (n=8) and healthy controls (n=7) (EvA study). RESULTS: ARG mean (SEM) prevalence was greater in stable COPD samples (35.2 (1.6)) than in healthy controls (27.6 (1.7); p=0.004) and correlated with total bacterial abundance (r2=0.23; p<0.001). Prevalence of ARG positive signals in individuals was not related to COPD symptoms, lung function or their changes at exacerbation. In the COPD subgroups designated High γProteobacteria and High Firmicutes, ARG prevalence was not different at stable state but significantly declined from stable through exacerbation to recovery in the former (p=0.011) without changes in total bacterial abundance. The ARG patterns were similar in COPD versus health, COPD microbiome-subgroups and between sputum and bronchoscopic samples independent of antibiotic exposure in the last 12 months. CONCLUSIONS: ARGs are highly prevalent in sputum, broadly in proportion to bacterial abundance in both healthy and COPD subjects. Thus, COPD appears to be an ARG reservoir due to high levels of bacterial colonisation.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Esputo/microbiología , Anciano , Carga Bacteriana , Femenino , Genes Bacterianos , Humanos , Masculino , Microbiota , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa
8.
Environ Microbiol ; 22(12): 5058-5072, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32483914

RESUMEN

Listeria monocytogenes is a foodborne pathogen causing systemic infection with high mortality. To allow efficient tracking of outbreaks a clear definition of the genomic signature of a cluster of related isolates is required, but lineage-specific characteristics call for a more detailed understanding of evolution. In our work, we used core genome MLST (cgMLST) to identify new outbreaks combined to core genome SNP analysis to characterize the population structure and gene flow between lineages. Whilst analysing differences between the four lineages of L. monocytogenes we have detected differences in the recombination rate, and interestingly also divergence in the SNP differences between sub-lineages. In addition, the exchange of core genome variation between the lineages exhibited a distinct pattern, with lineage III being the best donor for horizontal gene transfer. Whilst attempting to link bacteriophage-mediated transduction to observed gene transfer, we found an inverse correlation between phage presence in a lineage and the extent of recombination. Irrespective of the profound differences in recombination rates observed between sub-lineages and lineages, we found that the previously proposed cut-off of 10 allelic differences in cgMLST can be still considered valid for the definition of a foodborne outbreak cluster of L. monocytogenes.


Asunto(s)
Bacteriófagos/fisiología , Evolución Molecular , Flujo Génico , Listeria monocytogenes/genética , Transferencia de Gen Horizontal , Variación Genética , Genoma Bacteriano/genética , Listeria monocytogenes/clasificación , Listeria monocytogenes/aislamiento & purificación , Listeria monocytogenes/virología , Listeriosis/epidemiología , Listeriosis/microbiología , Tipificación de Secuencias Multilocus , Filogenia , Polimorfismo de Nucleótido Simple , Recombinación Genética
9.
BMC Infect Dis ; 20(1): 505, 2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32660552

RESUMEN

BACKGROUND: Meningococcal meningitis (MM) is a life-threatening disease associated with approximately 10% case fatality rates and neurological sequelae in 10-20% of the cases. Recently, we have shown that the matrix metalloproteinase (MMP) inhibitor BB-94 reduced brain injury in a mouse model of MM. The present study aimed to assess whether doxycycline (DOX), a tetracycline that showed a neuroprotective effect as adjuvant therapy in experimental pneumococcal meningitis (PM), would also exert a beneficial effect when given as adjunctive therapy to ceftriaxone (CRO) in experimental MM. METHODS: BALB/c mice were infected by the intracisternal route with a group C Neisseria meningitidis strain. Eighteen h post infection (hpi), animals were randomised for treatment with CRO [100 mg/kg subcutaneously (s.c.)], CRO plus DOX (30 mg/kg s.c.) or saline (control s.c.). Antibiotic treatment was repeated 24 and 40 hpi. Mouse survival and clinical signs, bacterial counts in cerebella, brain damage, MMP-9 and cyto/chemokine levels were assessed 48 hpi. RESULTS: Analysis of bacterial load in cerebella indicated that CRO and CRO + DOX were equally effective at controlling meningococcal replication. No differences in survival were observed between mice treated with CRO (94.4%) or CRO + DOX (95.5%), (p > 0.05). Treatment with CRO + DOX significantly diminished both the number of cerebral hemorrhages (p = 0.029) and the amount of MMP-9 in the brain (p = 0.046) compared to untreated controls, but not to CRO-treated animals (p > 0.05). Levels of inflammatory markers in the brain of mice that received CRO or CRO + DOX were not significantly different (p > 0.05). Overall, there were no significant differences in the parameters assessed between the groups treated with CRO alone or CRO + DOX. CONCLUSIONS: Treatment with CRO + DOX showed similar bactericidal activity to CRO in vivo, suggesting no antagonist effect of DOX on CRO. Combined therapy significantly improved mouse survival and disease severity compared to untreated animals, but addition of DOX to CRO did not offer significant benefits over CRO monotherapy. In contrast to experimental PM, DOX has no adjunctive activity in experimental MM.


Asunto(s)
Antibacterianos/uso terapéutico , Ceftriaxona/uso terapéutico , Doxiciclina/uso terapéutico , Meningitis Meningocócica/tratamiento farmacológico , Neisseria meningitidis Serogrupo C , Animales , Antibacterianos/administración & dosificación , Carga Bacteriana/efectos de los fármacos , Ceftriaxona/administración & dosificación , Hemorragia Cerebral/tratamiento farmacológico , Quimiocinas/análisis , Quimiocinas/metabolismo , Modelos Animales de Enfermedad , Doxiciclina/administración & dosificación , Quimioterapia Combinada , Femenino , Humanos , Estimación de Kaplan-Meier , Metaloproteinasa 9 de la Matriz/análisis , Metaloproteinasa 9 de la Matriz/metabolismo , Meningitis Meningocócica/mortalidad , Ratones , Ratones Endogámicos BALB C , Distribución Aleatoria , Resultado del Tratamiento
10.
Nucleic Acids Res ; 46(21): 11438-11453, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30321375

RESUMEN

Phase-variation of Type I restriction-modification systems can rapidly alter the sequence motifs they target, diversifying both the epigenetic patterns and endonuclease activity within clonally descended populations. Here, we characterize the Streptococcus pneumoniae SpnIV phase-variable Type I RMS, encoded by the translocating variable restriction (tvr) locus, to identify its target motifs, mechanism and regulation of phase variation, and effects on exchange of sequence through transformation. The specificity-determining hsdS genes were shuffled through a recombinase-mediated excision-reintegration mechanism involving circular intermediate molecules, guided by two types of direct repeat. The rate of rearrangements was limited by an attenuator and toxin-antitoxin system homologs that inhibited recombinase gene transcription. Target motifs for both the SpnIV, and multiple Type II, MTases were identified through methylation-sensitive sequencing of a panel of recombinase-null mutants. This demonstrated the species-wide diversity observed at the tvr locus can likely specify nine different methylation patterns. This will reduce sequence exchange in this diverse species, as the native form of the SpnIV RMS was demonstrated to inhibit the acquisition of genomic islands by transformation. Hence the tvr locus can drive variation in genome methylation both within and between strains, and limits the genomic plasticity of S. pneumoniae.


Asunto(s)
Epigénesis Genética , Genoma Bacteriano , Islas Genómicas , Streptococcus pneumoniae/genética , Secuencias de Aminoácidos , Antitoxinas/genética , Proteínas Bacterianas/genética , Metilación de ADN , Enzimas de Restricción-Modificación del ADN/genética , ADN Bacteriano/genética , Escherichia coli , Mutación , ARN Bacteriano/genética
11.
J Bacteriol ; 201(19)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31285240

RESUMEN

Virus-host interactions are regulated by complex coevolutionary dynamics. In Streptococcus pneumoniae, phase-variable type I restriction-modification (R-M) systems are part of the core genome. We hypothesized that the ability of the R-M systems to switch between six target DNA specificities also has a key role in preventing the spread of bacteriophages. Using the streptococcal temperate bacteriophage SpSL1, we show that the variants of both the SpnIII and SpnIV R-M systems are able to restrict invading bacteriophage with an efficiency approximately proportional to the number of target sites in the bacteriophage genome. In addition to restriction of lytic replication, SpnIII also led to abortive infection in the majority of host cells. During lytic infection, transcriptional analysis found evidence of phage-host interaction through the strong upregulation of the nrdR nucleotide biosynthesis regulon. During lysogeny, the phage had less of an effect on host gene regulation. This research demonstrates a novel combined bacteriophage restriction and abortive infection mechanism, highlighting the importance that the phase-variable type I R-M systems have in the multifunctional defense against bacteriophage infection in the respiratory pathogen S. pneumoniaeIMPORTANCE With antimicrobial drug resistance becoming an increasing burden on human health, much attention has been focused on the potential use of bacteriophages and their enzymes as therapeutics. However, the investigations into the physiology of the complex interactions of bacteriophages with their hosts have attracted far less attention, in comparison. This work describes the molecular characterization of the infectious cycle of a bacteriophage in the important human pathogen Streptococcus pneumoniae and explores the intricate relationship between phase-variable host defense mechanisms and the virus. This is the first report showing how a phase-variable type I restriction-modification system is involved in bacteriophage restriction while it also provides an additional level of infection control through abortive infection.


Asunto(s)
Proteínas Bacterianas/genética , Bacteriófagos/fisiología , Metilación de ADN , Streptococcus pneumoniae/virología , Proteínas Virales/genética , Bacteriófagos/genética , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Regulación Viral de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Lisogenia , Boca/microbiología , Análisis de Secuencia de ARN , Streptococcus pneumoniae/genética
12.
BMC Genomics ; 17(1): 1020, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27964731

RESUMEN

BACKGROUND: How the pathogen Clostridium difficile might survive, evolve and be transferred between reservoirs within the natural environment is poorly understood. Some ribotypes are found both in clinical and environmental settings. Whether these strains are distinct from each another and evolve in the specific environments is not established. The possession of a highly mobile genome has contributed to the genetic diversity and ongoing evolution of C. difficile. Interpretations of genetic diversity have been limited by fragmented assemblies resulting from short-read length sequencing approaches and by a limited understanding of epigenetic regulation of diversity. To address this, single molecule real time (SMRT) sequencing was used in this study as it produces high quality genome sequences, with resolution of repeat regions (including those found in mobile elements) and can generate data to determine methylation modifications across the sequence (the methylome). RESULTS: Chromosomal rearrangements and ribosomal operon duplications were observed in both genomes. The rearrangements occurred at insertion sites within two mobile genetic elements (MGEs), Tn6164 and Tn6293, present only in the M120 and CD105HS27 genomes, respectively. The gene content of these two transposons differ considerably which could impact upon horizontal gene transfer; differences include CDSs encoding methylases and a conjugative prophage only in Tn6164. To investigate mechanisms which could affect MGE transfer, the methylome, restriction modification (RM)  and the CRISPR/Cas systems were characterised for each strain. Notably, the environmental isolate, CD105HS27, does not share a consensus motif for m4C methylation, but has one additional spacer  when compared to the clinical isolate M120. CONCLUSIONS: These findings show key differences between the two strains in terms of their genetic capacity for MGE transfer. The carriage of horizontally transferred genes appear to have genome wide effects based on two different methylation patterns. The CRISPR/Cas system appears active although perhaps slow to evolve. Data suggests that both mechanisms are functional and impact upon horizontal gene transfer and genome evolution within C. difficile.


Asunto(s)
Clostridioides difficile/clasificación , Clostridioides difficile/genética , Microbiología Ambiental , Genoma Bacteriano , Genómica , Ribotipificación , Análisis de Secuencia de ADN , Sistemas CRISPR-Cas , Clostridioides difficile/aislamiento & purificación , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Biología Computacional/métodos , Metilación de ADN , Elementos Transponibles de ADN , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
13.
BMC Genomics ; 17: 491, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27411385

RESUMEN

BACKGROUND: Biocides and antibiotics are used to eradicate or prevent the growth of microbial species on surfaces (occasionally on catheters), or infected sites, either in combination or sequentially, raising concerns about the development of co-resistance to both antimicrobial types. The effect of such compounds on Salmonella enterica, a major food-borne and zoonotic pathogen, has been analysed in different studies, but only few works evaluated its biological cost, and the overall effects at the genomic and transcriptomic levels associated with diverse phenotypes resulting from biocide exposure, which was the aim of this work. RESULTS: Exposure to triclosan, clorhexidine, benzalkonium, (but not to hypochlorite) resulted in mutants with different phenotypes to a wide range of antimicrobials even unrelated to the selective agent. Most biocide-resistant mutants showed increased susceptibility to compounds acting on the cell wall (ß-lactams) or the cell membranes (poly-L-lysine, polymyxin B, colistin or toxic anions). Mutations (SNPs) were found in three intergenic regions and nine genes, which have a role in energy production, amino acids, carbohydrates or lipids metabolism, some of them involved in membrane transport and pathogenicity. Comparative transcriptomics of biocide-resistant mutants showed over-expression of genes encoding efflux pumps (sugE), ribosomal and transcription-related proteins, cold-shock response (cpeE) and enzymes of microaerobic metabolism including those of the phosphotransferase system. Mainly ribosomal, metabolic and pathogenicity-related genes had affected expression in both in vitro-selected biocide mutants and field Salmonella isolates with reduced biocide susceptibility. CONCLUSIONS: Multiple pathways can be involved in the adaptation of Salmonella to biocides, mainly related with global stress, or involving metabolic and membrane alterations, and eventually causing "collateral sensitivity" to other antimicrobials. These changes might impact the bacterial-environment interaction, imposing significant bacterial fitness costs which may reduce the chances of fixation and spread of biocide resistant mutants.


Asunto(s)
Adaptación Biológica , Antibacterianos/farmacología , Desinfectantes/farmacología , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/fisiología , Análisis por Conglomerados , Farmacorresistencia Bacteriana , Perfilación de la Expresión Génica , Genes Bacterianos , Aptitud Genética , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento , Pruebas de Sensibilidad Microbiana , Mutación
14.
PLoS Pathog ; 10(3): e1004026, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24651834

RESUMEN

The pathogenesis of bacteraemia after challenge with one million pneumococci of three isogenic variants was investigated. Sequential analyses of blood samples indicated that most episodes of bacteraemia were monoclonal events providing compelling evidence for a single bacterial cell bottleneck at the origin of invasive disease. With respect to host determinants, results identified novel properties of splenic macrophages and a role for neutrophils in early clearance of pneumococci. Concerning microbial factors, whole genome sequencing provided genetic evidence for the clonal origin of the bacteraemia and identified SNPs in distinct sub-units of F0/F1 ATPase in the majority of the ex vivo isolates. When compared to parental organisms of the inoculum, ex-vivo pneumococci with mutant alleles of the F0/F1 ATPase had acquired the capacity to grow at low pH at the cost of the capacity to grow at high pH. Although founded by a single cell, the genotypes of pneumococci in septicaemic mice indicate strong selective pressure for fitness, emphasising the within-host complexity of the pathogenesis of invasive disease.


Asunto(s)
Bacteriemia/microbiología , Interacciones Huésped-Patógeno/inmunología , Infecciones Neumocócicas/microbiología , Streptococcus pneumoniae/patogenicidad , Animales , Bacteriemia/genética , Bacteriemia/inmunología , Femenino , Citometría de Flujo , Técnicas de Inactivación de Genes , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Infecciones Neumocócicas/genética , Infecciones Neumocócicas/inmunología , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/inmunología , Virulencia
15.
BMC Genomics ; 16: 345, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25924916

RESUMEN

BACKGROUND: The enoyl-acyl carrier protein (ACP) reductase enzyme (FabI) is the target for a series of antimicrobial agents including novel compounds in clinical trial and the biocide triclosan. Mutations in fabI and heterodiploidy for fabI have been shown to confer resistance in S. aureus strains in a previous study. Here we further determined the fabI upstream sequence of a selection of these strains and the gene expression levels in strains with promoter region mutations. RESULTS: Mutations in the fabI promoter were found in 18% of triclosan resistant clinical isolates, regardless the previously identified molecular mechanism conferring resistance. Although not significant, a higher rate of promoter mutations were found in strains without previously described mechanisms of resistance. Some of the mutations identified in the clinical isolates were also detected in a series of laboratory mutants. Microarray analysis of selected laboratory mutants with fabI promoter region mutations, grown in the absence of triclosan, revealed increased fabI expression in three out of four tested strains. In two of these strains, only few genes other than fabI were upregulated. Consistently with these data, whole genome sequencing of in vitro selected mutants identified only few mutations except the upstream and coding regions of fabI, with the promoter mutation as the most probable cause of fabI overexpression. Importantly the gene expression profiling of clinical isolates containing similar mutations in the fabI promoter also showed, when compared to unrelated non-mutated isolates, a significant up-regulation of fabI. CONCLUSIONS: In conclusion, we have demonstrated the presence of C34T, T109G, and A101C mutations in the fabI promoter region of strains with fabI up-regulation, both in clinical isolates and/or laboratory mutants. These data provide further observations linking mutations upstream fabI with up-regulated expression of the fabI gene.


Asunto(s)
Antiinfecciosos Locales/farmacología , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana/genética , Enoil-ACP Reductasa (NADH)/genética , Staphylococcus aureus/efectos de los fármacos , Triclosán/farmacología , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Regulación hacia Abajo/efectos de los fármacos , Enoil-ACP Reductasa (NADH)/metabolismo , Genotipo , Datos de Secuencia Molecular , Mutación , Regiones Promotoras Genéticas , Staphylococcus aureus/genética , Staphylococcus aureus/aislamiento & purificación , Regulación hacia Arriba/efectos de los fármacos
16.
Antimicrob Agents Chemother ; 59(6): 3413-23, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25824225

RESUMEN

Exposure to biocides may result in cross-resistance to other antimicrobials. Changes in biocide and antibiotic susceptibilities, metabolism, and fitness costs were studied here in biocide-selected Escherichia coli and Klebsiella pneumoniae mutants. E. coli and K. pneumoniae mutants with various degrees of triclosan susceptibility were obtained after exposure to triclosan (TRI), benzalkonium chloride (BKC), chlorhexidine (CHX) or sodium hypochlorite (SHC), and ampicillin or ciprofloxacin. Alterations in antimicrobial susceptibility and metabolism in mutants were tested using Phenotype MicroArrays. The expression of AcrAB pump and global regulators (SoxR, MarA, and RamA) was measured by quantitative reverse transcription-PCR (qRT-PCR), and the central part of the fabI gene was sequenced. The fitness costs of resistance were assessed by a comparison of relative growth rates. Triclosan-resistant (TRI(r)) and triclosan-hypersusceptible (TRI(hs)) mutants of E. coli and K. pneumoniae were obtained after selection with biocides and/or antibiotics. E. coli TRI(r) mutants, including those with mutations in the fabI gene or in the expression of acrB, acrF, and marA, exhibited changes in susceptibility to TRI, CHX, and antibiotics. TRI(r) mutants for which the TRI MIC was high presented improved metabolism of carboxylic acids, amino acids, and carbohydrates. In TRI(r) mutants, resistance to one antimicrobial provoked hypersusceptibility to another one(s). TRI(r) mutants had fitness costs, particularly marA-overexpressing (E. coli) or ramA-overexpressing (K. pneumoniae) mutants. TRI, BKC, and CIP exposure frequently yielded TRI(r) mutants exhibiting alterations in AraC-like global regulators (MarA, SoxR, and RamA), AcrAB-TolC, and/or FabI, and influencing antimicrobial susceptibility, fitness, and metabolism. These various phenotypes suggest a trade-off of different selective processes shaping the evolution toward antibiotic/biocide resistance and influencing other adaptive traits.


Asunto(s)
Antibacterianos/farmacología , Desinfectantes/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/metabolismo , Triclosán/farmacología , Proteínas Bacterianas/metabolismo , Compuestos de Benzalconio/farmacología , Clorhexidina/farmacología , Escherichia coli/genética , Klebsiella pneumoniae/genética , Pruebas de Sensibilidad Microbiana , Hipoclorito de Sodio/farmacología
17.
Antimicrob Agents Chemother ; 58(2): 1235-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24295984

RESUMEN

Conjugative transposon Tn5253, an integrative conjugative element (ICE) of Streptococcus pneumoniae carrying the cat and tet(M) genes, was shown to be 64,528 bp in size and to contain 79 open reading frames, of which only 38 could be annotated. Two distinct genetic elements were found integrated into Tn5253: Tn5251 (18,033 bp), of the Tn916-Tn1545 family of ICEs, and Ωcat(pC194) (7,627 bp), which could not conjugate but was capable of intracellular mobility by excision, circularization, and integration by homologous recombination. The highest conjugation frequency of Tn5253 was observed when Streptococcus pyogenes was the donor (6.7 × 10(-3) transconjugants/donor).


Asunto(s)
Conjugación Genética , Elementos Transponibles de ADN , Genes Bacterianos , Streptococcus pneumoniae/genética , Secuencia de Bases , Recombinación Homóloga , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Streptococcus pyogenes/genética
18.
BMC Infect Dis ; 14: 726, 2014 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-25551808

RESUMEN

BACKGROUND: Approximately 7% of survivors from meningococcal meningitis (MM) suffer from neurological sequelae due to brain damage in the course of meningitis. The present study focuses on the role of matrix metalloproteinases (MMPs) in a novel mouse model of MM-induced brain damage. METHODS: The model is based on intracisternal infection of BALB/c mice with a serogroup C Neisseria meningitidis strain. Mice were infected with meningococci and randomised for treatment with the MMP inhibitor batimastat (BB-94) or vehicle. Animal survival, brain injury and host-response biomarkers were assessed 48 h after meningococcal challenge. RESULTS: Mice that received BB-94 presented significantly diminished MMP-9 levels (p < 0.01), intracerebral bleeding (p < 0.01), and blood-brain barrier (BBB) breakdown (p < 0.05) in comparison with untreated animals. In mice suffering from MM, the amount of MMP-9 measured by zymography significantly correlated with both intracerebral haemorrhage (p < 0.01) and BBB disruption (p < 0.05). CONCLUSIONS: MMPs significantly contribute to brain damage associated with experimental MM. Inhibition of MMPs reduces intracranial complications in mice suffering from MM, representing a potential adjuvant strategy in MM post-infection sequelae.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/patología , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/patología , Inhibidores de la Metaloproteinasa de la Matriz/uso terapéutico , Meningitis Meningocócica/tratamiento farmacológico , Meningitis Meningocócica/patología , Fenilalanina/análogos & derivados , Tiofenos/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Hemorragia Cerebral/complicaciones , Hemorragia Cerebral/enzimología , Quimiocinas/metabolismo , Citocinas/metabolismo , Giro Dentado/efectos de los fármacos , Giro Dentado/patología , Modelos Animales de Enfermedad , Femenino , Estimación de Kaplan-Meier , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Meningitis Meningocócica/complicaciones , Meningitis Meningocócica/enzimología , Ratones , Fenilalanina/farmacología , Fenilalanina/uso terapéutico , Tiofenos/farmacología
19.
Nat Commun ; 15(1): 5171, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886409

RESUMEN

Efficient utilization of nutrients is crucial for microbial survival and virulence. The same nutrient may be utilized by multiple catabolic pathways, indicating that the physical and chemical environments for induction as well as their functional roles may differ. Here, we study the tagatose and Leloir pathways for galactose catabolism of the human pathogen Streptococcus pneumoniae. We show that galactose utilization potentiates pneumococcal virulence, the induction of galactose catabolic pathways is influenced differentially by the concentration of galactose and temperature, and sialic acid downregulates galactose catabolism. Furthermore, the genetic regulation and in vivo induction of each pathway differ, and both galactose catabolic pathways can be turned off with a galactose analogue in a substrate-specific manner, indicating that galactose catabolic pathways can be potential drug targets.


Asunto(s)
Galactosa , Regulación Bacteriana de la Expresión Génica , Streptococcus pneumoniae , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Galactosa/metabolismo , Virulencia/genética , Animales , Hexosas/metabolismo , Ratones , Redes y Vías Metabólicas/genética , Humanos , Infecciones Neumocócicas/microbiología , Infecciones Neumocócicas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Temperatura , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Femenino
20.
Cureus ; 15(2): e35143, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36949973

RESUMEN

Introduction Ex vivo machine perfusion describes the technique where organs are continuously perfused and oxygenated extracorporeally (at physiological conditions) to maintain the organs' viability. To our knowledge, there are currently no reported studies describing ex vivo perfusion of a single hepatic segment. Here, we describe the development of a porcine ex vivo hepatic segmental perfusion model to demonstrate proof of concept and support further research into the ex vivo perfusion of the human liver using discarded tissue.  Methods Whole livers were retrieved from abattoir-derived pigs and connected to a normothermic extracorporeal perfusion circuit. Constant segmental perfusion via the common or segmental hepatic artery and portal vein with heparinised autologous blood was established. The viability of the perfused organ was assessed by monitoring perfusion pressures, flow rates and histology samples. Results Following perfusion and optimisation of the model for three hepatic segments, the third perfusion demonstrated viable hepatocytes centrally after 4 h of segmental perfusion. Conclusion Ex vivo hepatic segmental perfusion is technically challenging but its success in a porcine model and the principles learned should facilitate the development of an analogous human model using discarded tissue following formal liver resections. The model would use a healthy liver segment following a major formal resection such as a hemi-hepatectomy and ex vivo perfusion performed via a segmental hepatic artery and portal vein. If successful this model would represent a significant development and enable ethical translation research to assess the response of human livers to a variety of stressors, including toxicity and infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA