Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nano Lett ; 22(6): 2236-2243, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35258977

RESUMEN

Tuning the surface structure of the photoelectrode provides one of the most effective ways to address the critical challenges in artificial photosynthesis, such as efficiency, stability, and product selectivity, for which gallium nitride (GaN) nanowires have shown great promise. In the GaN wurtzite crystal structure, polar, semipolar, and nonpolar planes coexist and exhibit very different structural, electronic, and chemical properties. Here, through a comprehensive study of the photoelectrochemical performance of GaN photocathodes in the form of films and nanowires with controlled surface polarities we show that significant photoelectrochemical activity can be observed when the nonpolar surfaces are exposed in the electrolyte, whereas little or no activity is measured from the GaN polar c-plane surfaces. The atomic origin of this fundamental difference is further revealed through density functional theory calculations. This study provides guideline on crystal facet engineering of metal-nitride photo(electro)catalysts for a broad range of artificial photosynthesis chemical reactions.


Asunto(s)
Galio , Nanoestructuras , Nanocables , Catálisis , Galio/química , Nanoestructuras/química , Nanocables/química
2.
Nat Mater ; 20(8): 1130-1135, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33820963

RESUMEN

Development of an efficient yet durable photoelectrode is of paramount importance for deployment of solar-fuel production. Here, we report the photoelectrochemically self-improving behaviour of a silicon/gallium nitride photocathode active for hydrogen production with a Faradaic efficiency approaching ~100%. By using a correlative approach based on different spectroscopic and microscopic techniques, as well as density functional theory calculations, we provide a mechanistic understanding of the chemical transformation that is the origin of the self-improving behaviour. A thin layer of gallium oxynitride forms on the side walls of the gallium nitride grains, via a partial oxygen substitution at nitrogen sites, and displays a higher density of catalytic sites for the hydrogen-evolving reaction. This work demonstrates that the chemical transformation of gallium nitride into gallium oxynitride leads to sustained operation and enhanced catalytic activity, thus showing promise for oxynitride layers as protective catalytic coatings for hydrogen evolution.

3.
J Chem Phys ; 145(15): 154501, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27782470

RESUMEN

Establishing an accurate and predictive computational framework for the description of complex aqueous solutions is an ongoing challenge for density functional theory based first-principles molecular dynamics (FPMD) simulations. In this context, important advances have been made in recent years, including the development of sophisticated exchange-correlation functionals. On the other hand, simulations based on simple generalized gradient approximation (GGA) functionals remain an active field, particularly in the study of complex aqueous solutions due to a good balance between the accuracy, computational expense, and the applicability to a wide range of systems. Such simulations are often performed at elevated temperatures to artificially "correct" for GGA inaccuracies in the description of liquid water; however, a detailed understanding of how the choice of temperature affects the structure and dynamics of other components, such as solvated ions, is largely unknown. To address this question, we carried out a series of FPMD simulations at temperatures ranging from 300 to 460 K for liquid water and three representative aqueous solutions containing solvated Na+, K+, and Cl- ions. We show that simulations at 390-400 K with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional yield water structure and dynamics in good agreement with experiments at ambient conditions. Simultaneously, this computational setup provides ion solvation structures and ion effects on water dynamics consistent with experiments. Our results suggest that an elevated temperature around 390-400 K with the PBE functional can be used for the description of structural and dynamical properties of liquid water and complex solutions with solvated ions at ambient conditions.

4.
Angew Chem Int Ed Engl ; 54(12): 3626-9, 2015 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-25619645

RESUMEN

Boron is an important element, used in applications from superhard materials to superconductors. Boron exists in several forms (allotropes) and, surprisingly, it was not known which form (α or ß) is stable at ambient conditions. Through experiment, we quantify the relative stability of α-boron and ß-boron as a function of temperature. The ground-state energies of α-boron and ß-boron are nearly identical. For all temperatures up to 2000 K, the complicated ß-boron structure is more stable than the simpler α-boron structure at ambient pressure. Below 1000 K, ß-boron is entropically stabilized with respect to α-boron owing to its partially occupied sites, whereas at higher temperatures ß-boron is enthalpically stabilized with respect to α-boron. We show that α-boron only becomes stable on application of pressure.

5.
ACS Appl Mater Interfaces ; 16(24): 31687-31695, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38840582

RESUMEN

Improved understanding of proton transfer in nanopores is critical for a wide range of emerging applications, yet experimentally probing mechanisms and energetics of this process remains a significant challenge. To help reveal details of this process, we developed and applied a machine learning potential derived from first-principles calculations to examine water reactivity and proton transfer in TiO2 slit-pores. We find that confinement of water within pores smaller than 0.5 nm imposes strong and complex effects on water reactivity and proton transfer. Although the proton transfer mechanism is similar to that at a TiO2 interface with bulk water, confinement reduces the activation energy of this process, leading to more frequent proton transfer events. This enhanced proton transfer stems from the contraction of oxygen-oxygen distances dictated by the interplay between confinement and hydrophilic interactions. Our simulations also highlight the importance of the surface topology, where faster proton transport is found in the direction where a unique arrangement of surface oxygens enables the formation of an ordered water chain. In a broader context, our study demonstrates that proton transfer in hydrophilic nanopores can be enhanced by controlling pore size, surface chemistry, and topology.

6.
J Am Chem Soc ; 135(42): 15774-83, 2013 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-24053479

RESUMEN

We investigate the structure, topology, and dynamics of liquid water at the interface with natively hydroxylated (001) surfaces of InP and GaP photoelectrodes. Using ab initio molecular dynamics simulations, we show that contact with the semiconductor surface enhances the water hydrogen-bond strength at the interface. This leads to the formation of an ice-like structure, within which dynamically driven water dissociation and local proton hopping are amplified. Nevertheless, the structurally similar and isovalent InP and GaP surfaces generate qualitatively different interfacial water dynamics. This can be traced to slightly more covalent-like character in the binding of surface adsorbates to GaP, which results in a more rigid hydrogen-bond network that limits the explored topological phase space. As a consequence, local proton hopping can give rise to long-range surface proton transport on InP, whereas the process is kinetically limited on GaP. This allows for spatial separation of individual stages of hydrogen-evolving, multistep reactions on InP(001). Possible implications for the mechanisms of cathodic water splitting and photocorrosion on the two surfaces are considered in light of available experimental evidence.

7.
Nano Lett ; 12(6): 2763-7, 2012 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-22594309

RESUMEN

X-ray absorption spectroscopy and ab initio modeling of the experimental spectra have been used to investigate the effects of surface passivation on the unoccupied electronic states of CdSe quantum dots (QDs). Significant differences are observed in the unoccupied electronic structure of the CdSe QDs, which are shown to arise from variations in specific ligand-surface bonding interactions.


Asunto(s)
Compuestos de Cadmio/química , Modelos Químicos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Puntos Cuánticos , Compuestos de Selenio/química , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Ligandos
8.
Nat Comput Sci ; 3(8): 675-686, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38177319

RESUMEN

We present a graph neural network approach that fully automates the prediction of defect formation enthalpies for any crystallographic site from the ideal crystal structure, without the need to create defected atomic structure models as input. Here we used density functional theory reference data for vacancy defects in oxides, to train a defect graph neural network (dGNN) model that replaces the density functional theory supercell relaxations otherwise required for each symmetrically unique crystal site. Interfaced with thermodynamic calculations of reduction entropies and associated free energies, the dGNN model is applied to the screening of oxides in the Materials Project database, connecting the zero-kelvin defect enthalpies to high-temperature process conditions relevant for solar thermochemical hydrogen production and other energy applications. The dGNN approach is applicable to arbitrary structures with an accuracy limited principally by the amount and diversity of the training data, and it is generalizable to other defect types and advanced graph convolution architectures. It will help to tackle future materials discovery problems in clean energy and beyond.


Asunto(s)
Redes Neurales de la Computación , Óxidos , Temperatura , Fenómenos Físicos , Termodinámica
9.
ACS Appl Mater Interfaces ; 15(14): 17814-17824, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36975208

RESUMEN

Electrocatalysts encapsulated by an ultrathin and semipermeable oxide layer offer a promising avenue for efficient, selective, and cost-effective production of hydrogen through photoelectrochemical water splitting. This architecture is especially attractive for Z-scheme water splitting, for which a nanoporous oxide film can be leveraged to mitigate undesired, yet kinetically facile, reactions involving redox shuttles, such as aqueous iron cations, by limiting transport of these species to catalytically active sites. In this work, molecular dynamics simulations were combined with electrochemical measurements to provide a mechanistic understanding of permeation of water and Fe(III)/Fe(II) redox shuttles through nanoporous SiO2 films. It is shown that even for SiO2 pores with a width as small as 0.8 nm, water does not experience any energy barrier for permeating into the pores due to a favorable interaction with hydrophilic silanol groups on the oxide surface. In contrast, permeation of Fe(III) and Fe(II) into microporous SiO2 pores is limited due to high energy barriers, which stem from a combination of distortion and dehydration of the second and third ion solvation shells. Our simulations and experimental results show that SiO2 coatings can effectively mitigate undesired Fe(III)/Fe(II) redox reactions at underlying electrodes by attenuating permeation of iron cations, while allowing water to permeate and thus participate in water splitting reactions. In a broader context, our study demonstrates that selectivity of solvated cations can be manipulated by controlling the pore size and surface chemistry of oxide films.

11.
J Chem Phys ; 136(6): 064705, 2012 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22360213

RESUMEN

We perform density-functional theory calculations on model surfaces to investigate the interplay between the morphology, electronic structure, and chemistry of oxygen- and hydroxyl-rich surfaces of InP(001) and GaP(001). Four dominant local oxygen topologies are identified based on the coordination environment: M-O-M and M-O-P bridges for the oxygen-decorated surface; and M-[OH]-M bridges and atop M-OH structures for the hydroxyl-decorated surface (M = In, Ga). Unique signatures in the electronic structure are linked to each of the bond topologies, defining a map to structural models that can be used to aid the interpretation of experimental probes of native oxide morphology. The M-O-M bridge can create a trap for hole carriers upon imposition of strain or chemical modification of the bonding environment of the M atoms, which may contribute to the observed photocorrosion of GaP/InP-based electrodes in photoelectrochemical cells. Our results suggest that a simplified model incorporating the dominant local bond topologies within an oxygen adlayer should reproduce the essential chemistry of complex oxygen-rich InP(001) or GaP(001) surfaces, representing a significant advantage from a modeling standpoint.

12.
J Chem Theory Comput ; 17(12): 7447-7467, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34726888

RESUMEN

We present inq, a new implementation of density functional theory (DFT) and time-dependent DFT (TDDFT) written from scratch to work on graphic processing units (GPUs). Besides GPU support, inq makes use of modern code design features and takes advantage of newly available hardware. By designing the code around algorithms, rather than against specific implementations and numerical libraries, we aim to provide a concise and modular code. The result is a fairly complete DFT/TDDFT implementation in roughly 12 000 lines of open-source C++ code representing a modular platform for community-driven application development on emerging high-performance computing architectures.

13.
J Phys Chem Lett ; 12(27): 6299-6304, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34227805

RESUMEN

High defect tolerance has been considered a primary reason for the long charge carrier lifetime and high photoluminescence quantum yield in bulk lead halide perovskites (LHPs). On the other hand, surface defects play a critical role in determining charge carrier dynamics and optical properties, especially for LHP nanocrystals and quantum dots. Understanding the nature of surface defects and developing strategy for their effective passivation are thus of strong interest. Focusing on a prototypical LHP, CsPbBr3, our work uses first-principles calculations to reveal that interstitial sites and antisites can have lower formation energies when they form at the surface while simultaneously creating deep trap states within the bandgap. Meanwhile, the formation of halide vacancies is energetically less favorable. On the basis of a new surface defect model, we demonstrate the explicit role of molecular ligands in passivating these defects, which eliminate trap states in favor of shallow states and enhance photoluminescence.

15.
Nature ; 431(7009): 669-72, 2004 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-15470423

RESUMEN

It is generally assumed that solid hydrogen will transform into a metallic alkali-like crystal at sufficiently high pressure. However, some theoretical models have also suggested that compressed hydrogen may form an unusual two-component (protons and electrons) metallic fluid at low temperature, or possibly even a zero-temperature liquid ground state. The existence of these new states of matter is conditional on the presence of a maximum in the melting temperature versus pressure curve (the 'melt line'). Previous measurements of the hydrogen melt line up to pressures of 44 GPa have led to controversial conclusions regarding the existence of this maximum. Here we report ab initio calculations that establish the melt line up to 200 GPa. We predict that subtle changes in the intermolecular interactions lead to a decline of the melt line above 90 GPa. The implication is that as solid molecular hydrogen is compressed, it transforms into a low-temperature quantum fluid before becoming a monatomic crystal. The emerging low-temperature phase diagram of hydrogen and its isotopes bears analogies with the familiar phases of 3He and 4He (the only known zero-temperature liquids), but the long-range Coulomb interactions and the large component mass ratio present in hydrogen would result in dramatically different properties.

16.
Phys Rev E ; 102(5-1): 053203, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33327061

RESUMEN

Boron carbide (B_{4}C) is of both fundamental scientific and practical interest due to its structural complexity and how it changes upon compression, as well as its many industrial uses and potential for use in inertial confinement fusion (ICF) and high-energy density physics experiments. We report the results of a comprehensive computational study of the equation of state (EOS) of B_{4}C in the liquid, warm dense matter, and plasma phases. Our calculations are cross-validated by comparisons with Hugoniot measurements up to 61 megabar from planar shock experiments performed at the National Ignition Facility (NIF). Our computational methods include path integral Monte Carlo, activity expansion, as well as all-electron Green's function Korringa-Kohn-Rostoker and molecular dynamics that are both based on density functional theory. We calculate the pressure-internal energy EOS of B_{4}C over a broad range of temperatures (∼6×10^{3}-5×10^{8} K) and densities (0.025-50 g/cm^{3}). We assess that the largest discrepancies between theoretical predictions are ≲5% near the compression maximum at 1-2×10^{6} K. This is the warm-dense state in which the K shell significantly ionizes and has posed grand challenges to theory and experiment. By comparing with different EOS models, we find a Purgatorio model (LEOS 2122) that agrees with our calculations. The maximum discrepancies in pressure between our first-principles predictions and LEOS 2122 are ∼18% and occur at temperatures between 6×10^{3}-2×10^{5} K, which we believe originate from differences in the ion thermal term and the cold curve that are modeled in LEOS 2122 in comparison with our first-principles calculations. To account for potential differences in the ion thermal term, we have developed three new equation-of-state models that are consistent with theoretical calculations and experiment. We apply these new models to 1D hydrodynamic simulations of a polar direct-drive NIF implosion, demonstrating that these new models are now available for future ICF design studies.

17.
J Am Chem Soc ; 131(5): 1903-9, 2009 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-19191703

RESUMEN

All elements, except for helium, appear to solidify into crystalline forms at zero temperature, and it is generally assumed that the introduction of lattice defects results in an increase in internal energy. beta-Rhombohedral boron, a thermodynamically stable form of elemental boron at high temperature, is known to have a large amount of partial occupied sites, seemingly in conflict with our common knowledge. By using lattice Monte Carlo techniques combined with ab initio calculations, we find that the beta-phase is stabilized by a macroscopic amount of intrinsic defects that are responsible not only for entropic effects but also for a reduction in internal energy. These defects enable the conversion of two-center to three-center bonds and are accompanied by the presence of localized, nonconductive electronic states in the optical gap. In addition we find that the ab initio Ising model describing the partial occupancy of beta-boron has macroscopic residual entropy, suggesting that boron is a frustrated system analogous to ice and spin ice.

18.
ACS Appl Mater Interfaces ; 11(5): 4930-4941, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30630309

RESUMEN

Solid-state metal hydrides are prime candidates to replace compressed hydrogen for fuel cell vehicles due to their high volumetric capacities. Sodium aluminum hydride has long been studied as an archetype for higher-capacity metal hydrides, with improved reversibility demonstrated through the addition of titanium catalysts; however, atomistic mechanisms for surface processes, including hydrogen desorption, are still uncertain. Here, operando and ex situ measurements from a suite of diagnostic tools probing multiple length scales are combined with ab initio simulations to provide a detailed and unbiased view of the evolution of the surface chemistry during hydrogen release. In contrast to some previously proposed mechanisms, the titanium dopant does not directly facilitate desorption at the surface. Instead, oxidized surface species, even on well-protected NaAlH4 samples, evolve during dehydrogenation to form surface hydroxides with differing levels of hydrogen saturation. Additionally, the presence of these oxidized species leads to considerably lower computed barriers for H2 formation compared to pristine hydride surfaces, suggesting that oxygen may actively participate in hydrogen release, rather than merely inhibiting diffusion as is commonly presumed. These results demonstrate how close experiment-theory feedback can elucidate mechanistic understanding of complex metal hydride chemistry and potentially impactful roles of unavoidable surface impurities.

19.
J Phys Chem Lett ; 9(1): 194-203, 2018 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-29240441

RESUMEN

Many energy storage and conversion devices rely on processes that take place at complex interfaces, where structural and chemical properties are often difficult to probe under operating conditions. A primary example is solar water splitting using high-performance photoelectrochemical cells, where surface chemistry, including native oxide formation, affects hydrogen generation. In this Perspective, we discuss some of the challenges associated with interrogating interface chemistry, and how they may be overcome by integrating high-level first-principles calculations of explicit interfaces with ambient pressure X-ray photoelectron spectroscopy and direct spectroscopic simulations. We illustrate the benefit of this combined approach toward insights into native oxide chemistry at prototypical InP/water and GaP/water interfaces. This example suggests a more general roadmap for obtaining a realistic and reliable description of the chemistry of complex interfaces by combining state-of-the-art computational and experimental techniques.

20.
Phys Rev E ; 98(2-1): 023205, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30253522

RESUMEN

We report a theoretical equation of state (EOS) table for boron across a wide range of temperatures (5.1×10^{4}-5.2×10^{8} K) and densities (0.25-49 g/cm^{3}) and experimental shock Hugoniot data at unprecedented high pressures (5608±118 GPa). The calculations are performed with first-principles methods combining path-integral Monte Carlo (PIMC) at high temperatures and density-functional-theory molecular-dynamics (DFT-MD) methods at lower temperatures. PIMC and DFT-MD cross-validate each other by providing coherent EOS (difference <1.5 Hartree/boron in energy and <5% in pressure) at 5.1×10^{5} K. The Hugoniot measurement is conducted at the National Ignition Facility using a planar shock platform. The pressure-density relation found in our shock experiment is on top of the shock Hugoniot profile predicted with our first-principles EOS and a semiempirical EOS table (LEOS 50). We investigate the self-diffusivity and the effect of thermal and pressure-driven ionization on the EOS and shock compression behavior in high-pressure and -temperature conditions. We also study the sensitivity of a polar direct-drive exploding pusher platform to pressure variations based on applying pressure multipliers to LEOS 50 and by utilizing a new EOS model based on our ab initio simulations via one-dimensional radiation-hydrodynamic calculations. The results are valuable for future theoretical and experimental studies and engineering design in high-energy density research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA