Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Appl Environ Microbiol ; 80(10): 3209-18, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24632253

RESUMEN

Bacterial multicomponent monooxygenase gene targets in Pseudonocardia dioxanivorans CB1190 were evaluated for their use as biomarkers to identify the potential for 1,4-dioxane biodegradation in pure cultures and environmental samples. Our studies using laboratory pure cultures and industrial activated sludge samples suggest that the presence of genes associated with dioxane monooxygenase, propane monooxygenase, alcohol dehydrogenase, and aldehyde dehydrogenase are promising indicators of 1,4-dioxane biotransformation; however, gene abundance was insufficient to predict actual biodegradation. A time course gene expression analysis of dioxane and propane monooxygenases in Pseudonocardia dioxanivorans CB1190 and mixed communities in wastewater samples revealed important associations with the rates of 1,4-dioxane removal. In addition, transcripts of alcohol dehydrogenase and aldehyde dehydrogenase genes were upregulated during biodegradation, although only the aldehyde dehydrogenase was significantly correlated with 1,4-dioxane concentrations. Expression of the propane monooxygenase demonstrated a time-dependent relationship with 1,4-dioxane biodegradation in P. dioxanivorans CB1190, with increased expression occurring after over 50% of the 1,4-dioxane had been removed. While the fraction of P. dioxanivorans CB1190-like bacteria among the total bacterial population significantly increased with decrease in 1,4-dioxane concentrations in wastewater treatment samples undergoing active biodegradation, the abundance and expression of monooxygenase-based biomarkers were better predictors of 1,4-dioxane degradation than taxonomic 16S rRNA genes. This study illustrates that specific bacterial monooxygenase and dehydrogenase gene targets together can serve as effective biomarkers for 1,4-dioxane biodegradation in the environment.


Asunto(s)
Actinomycetales/genética , Actinomycetales/metabolismo , Proteínas Bacterianas/genética , Dioxanos/metabolismo , Aguas del Alcantarillado/microbiología , Aguas Residuales/microbiología , Actinomycetales/enzimología , Actinomycetales/aislamiento & purificación , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Proteínas Bacterianas/metabolismo , Biotransformación , Marcadores Genéticos
2.
Artículo en Inglés | MEDLINE | ID: mdl-24844890

RESUMEN

Multiple lines of evidence were used to document the natural attenuation of perchlorate in a shallow alluvial aquifer. In the upgradient, aerobic portion of the aquifer, perchlorate did not biodegrade. However, natural flushing by groundwater flow is reducing perchlorate concentrations in the aquifer over time. Perchlorate concentrations in the source area are expected to meet cleanup criteria in 11 to 27 years without active remedial measures. At the distal end of the plume, perchlorate is rapidly degraded as it migrates upward through organic rich littoral zone sediments. Apparent first-order degradation rates in groundwater were about 0.20 d(-1) and are consistent with laboratory macrocosm rates (0.12 d(-1)). qPCR results show a distinct region of the littoral zone where perchlorate degraders are elevated. The Eh within this zone varies from +0.1 to +0.3 V indicating perchlorate degraders can thrive in moderately oxidizing conditions. The study has shown that (i) there was no apparent perchlorate biodegradation in aerobic aquifer; (ii) perchlorate declines over time in aerobic aquifer due to flushing; (iii) there was a rapid perchlorate attenuation in organic rich littoral zone; and, (iv) qPCR results show large increases in perchlorate degraders in the littoral zone.


Asunto(s)
Agua Subterránea/análisis , Percloratos/análisis , Contaminantes Químicos del Agua/análisis , Bacterias/metabolismo , Biodegradación Ambiental , Monitoreo del Ambiente , Agua Subterránea/microbiología , Percloratos/metabolismo , Movimientos del Agua , Contaminantes Químicos del Agua/metabolismo
3.
Environ Sci Technol ; 47(19): 11131-8, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24053159

RESUMEN

Dehalococcoides mccartyi (Dhc) strains are keystone bacteria for reductive dechlorination of chlorinated ethenes to nontoxic ethene in contaminated aquifers. Enumeration of Dhc biomarker genes using quantitative real-time PCR (qPCR) in groundwater is a key component of site assessment and bioremediation monitoring. Unfortunately, standardized qPCR procedures that recognize impaired measurements due to PCR inhibition, low template DNA concentrations, or analytical error are not available, thus limiting confidence in qPCR data. To improve contemporary approaches for enumerating Dhc in environmental samples, multiplex qPCR assays were designed to quantify the Dhc 16S rRNA gene and one of two different internal amplification controls (IACs): a modified Dhc 16S rRNA gene fragment (Dhc*) and the firefly luciferase gene luc. The Dhc* IAC exhibited competitive inhibition in qPCR with the Dhc 16S rRNA gene template when the ratio of either target was 100-fold greater than the other target. A multiplex qPCR assay with the luc IAC avoided competitive inhibition and accurately quantified Dhc abundances ranging from ∼10 to 10(7) 16S rRNA gene copies per reaction. The addition of ∼10(6) E. coli luc IAC to simulated groundwater amended with the Dhc-containing consortium KB-1 yielded reproducible luc counts after DNA extraction and multiplex qPCR enumeration. The application of the luc IAC assay improved Dhc biomarker gene quantification from simulated groundwater samples and is a valuable approach for "ground truthing" qPCR data obtained in different laboratories, thus reducing ambiguity associated with qPCR enumeration and reproducibility.


Asunto(s)
Chloroflexi/genética , Genes Bacterianos , Genes de ARNr , ARN Ribosómico 16S/genética , Biomarcadores/análisis , Monitoreo del Ambiente/métodos , Escherichia coli/genética , Agua Subterránea/microbiología , Luciferasas de Luciérnaga/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Microbiología del Agua
4.
Ground Water Monit Remediat ; 33(4): 57-68, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-25525320

RESUMEN

Although the anaerobic biodegradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) has been documented in the laboratory and the field, knowledge of the microorganisms and mechanisms involved is still lacking. In this study, DNA-stable isotope probing (SIP) was used to identify microorganisms involved in anaerobic fuel oxygenate biodegradation in a sulfate-reducing MTBE and TBA plume. Microorganisms were collected in the field using Bio-Sep® beads amended with 13C5-MTBE, 13C1-MTBE (only methoxy carbon labeled), or13C4-TBA. 13C-DNA and 12C-DNA extracted from the Bio-Sep beads were cloned and 16S rRNA gene sequences were used to identify the indigenous microorganisms involved in degrading the methoxy group of MTBE and the tert-butyl group of MTBE and TBA. Results indicated that microorganisms were actively degrading 13C-labeled MTBE and TBA in situ and the 13C was incorporated into their DNA. Several sequences related to known MTBE- and TBA-degraders in the Burkholderiales and the Sphingomonadales orders were detected in all three13C clone libraries and were likely to be primary degraders at the site. Sequences related to sulfate-reducing bacteria and iron-reducers, such as Geobacter and Geothrix, were only detected in the clone libraries where MTBE and TBA were fully labeled with 13C, suggesting that they were involved in processing carbon from the tert-butyl group. Sequences similar to the Pseudomonas genus predominated in the clone library where only the methoxy carbon of MTBE was labeled with 13C. It is likely that members of this genus were secondary degraders cross-feeding on 13C-labeled metabolites such as acetate.

5.
Environ Sci Technol ; 44(17): 6829-34, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20681521

RESUMEN

Increasingly, molecular biological tools, most notably quantitative polymerase chain reaction (qPCR), are being employed to provide a more comprehensive assessment of bioremediation of petroleum hydrocarbons and fuel oxygenates. While qPCR enumeration of key organisms or catabolic genes can aid in site management decisions, evaluation of site activities conducted to stimulate biodegradation would ideally include a direct measure of gene expression to infer activity. In the current study, reverse-transcriptase (RT) qPCR was used to monitor gene expression to evaluate the effectiveness of an oxygen infusion system to promote biodegradation of BTEX and MTBE. During system operation, dissolved oxygen (DO) levels at the infusion points were greater than 30 mg/L, contaminant concentrations decreased, and transcription of two aromatic oxygenase genes and Methylibium petroleiphilum PM1-like 16S rRNA copies increased by as many as 5 orders of magnitude. Moreover, aromatic oxygenase gene transcription and PM1 16s rRNA increased at downgradient locations despite low DO levels even during system operation. Conversely, target gene expression substantially decreased when the system was deactivated. RT-qPCR results also corresponded to increases in benzene and MTBE attenuation rates. Overall, monitoring gene expression complemented traditional groundwater analyses and conclusively demonstrated that the oxygen infusion system promoted BTEX and MTBE biodegradation.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Gasolina/análisis , Regulación Bacteriana de la Expresión Génica , Oxígeno/análisis , Proteobacteria/genética , Benceno/análisis , Biodegradación Ambiental , California , Cinética , Proteobacteria/enzimología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tolueno/análisis , Xilenos/análisis
6.
ISME J ; 11(12): 2767-2780, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28809851

RESUMEN

Organohalide-respiring bacteria have key roles in the natural chlorine cycle; however, most of the current knowledge is based on cultures from contaminated environments. We demonstrate that grape pomace compost without prior exposure to chlorinated solvents harbors a Dehalogenimonas (Dhgm) species capable of using chlorinated ethenes, including the human carcinogen and common groundwater pollutant vinyl chloride (VC) as electron acceptors. Grape pomace microcosms and derived solid-free enrichment cultures were able to dechlorinate trichloroethene (TCE) to less chlorinated daughter products including ethene. 16S rRNA gene amplicon and qPCR analyses revealed a predominance of Dhgm sequences, but Dehalococcoides mccartyi (Dhc) biomarker genes were not detected. The enumeration of Dhgm 16S rRNA genes demonstrated VC-dependent growth, and 6.55±0.64 × 108 cells were measured per µmole of chloride released. Metagenome sequencing enabled the assembly of a Dhgm draft genome, and 52 putative reductive dehalogenase (RDase) genes were identified. Proteomic workflows identified a putative VC RDase with 49 and 56.1% amino acid similarity to the known VC RDases VcrA and BvcA, respectively. A survey of 1,173 groundwater samples collected from 111 chlorinated solvent-contaminated sites in the United States and Australia revealed that Dhgm 16S rRNA genes were frequently detected and outnumbered Dhc in 65% of the samples. Dhgm are likely greater contributors to reductive dechlorination of chlorinated solvents in contaminated aquifers than is currently recognized, and non-polluted environments represent sources of organohalide-respiring bacteria with novel RDase genes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chloroflexi/enzimología , Hidrolasas/metabolismo , Vitis/química , Australia , Proteínas Bacterianas/genética , Biodegradación Ambiental , Chloroflexi/genética , Chloroflexi/aislamiento & purificación , Chloroflexi/metabolismo , Compostaje , Etilenos/metabolismo , Agua Subterránea/microbiología , Halogenación , Hidrolasas/genética , Proteómica , Tricloroetileno/metabolismo , Cloruro de Vinilo/metabolismo , Vitis/microbiología , Contaminantes Químicos del Agua/metabolismo
7.
Environ Sci Technol ; 44(14): 5516-22, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20560650

RESUMEN

The objective of this study was to develop and validate a simple, field-portable, microarray system for monitoring microbial community structure and dynamics in groundwater and subsurface environments, using samples representing site status before acetate injection, during Fe-reduction, in the transition from Fe- to SO(4)(2-)-reduction, and into the SO(4)(2-)-reduction phase. Limits of detection for the array are approximately 10(2)-10(3) cell equivalents of DNA per reaction. Sample-to-answer results for the field deployment were obtained in 4 h. Retrospective analysis of 50 samples showed the expected progression of microbial signatures from Fe- to SO(4)(2-) -reducers with changes in acetate amendment and in situ field conditions. The microarray response for Geobacter was highly correlated with qPCR for the same target gene (R(2) = 0.84). Microarray results were in concordance with quantitative PCR data, aqueous chemistry, site lithology, and the expected microbial community response, indicating that the field-portable microarray is an accurate indicator of microbial presence and response to in situ remediation of a uranium-contaminated site.


Asunto(s)
Bacterias/metabolismo , Biodegradación Ambiental , Monitoreo del Ambiente/instrumentación , Análisis por Micromatrices/instrumentación , Uranio/metabolismo , Monitoreo del Ambiente/métodos , Contaminantes Ambientales , Suelo/análisis , Microbiología del Suelo , Uranio/química , Microbiología del Agua
8.
Environ Sci Technol ; 44(13): 5127-33, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20545341

RESUMEN

Biostimulation and bioaugmentation have emerged as constructive remedies for chlorinated ethene-contaminated aquifers, and a link between Dehalococcoides (Dhc) bacteria and chlorinated ethene detoxification has been established. To quantify Dhc biomarker genes, groundwater samples are shipped to analytical laboratories where biomass is collected on membrane filters by vacuum filtration for DNA extraction and quantitative real-time PCR analysis. This common practice was compared with a straightforward, on-site filtration approach to Sterivex cartridges. In initial laboratory studies with groundwater amended with known amounts of Dhc target cells, Sterivex cartridges yielded one-third of the total DNA and 9-18% of the Dhc biomarker gene copies compared with vacuum filtration. Upon optimization, DNA yields increased to 94 +/- 38% (+/-SD, n = 10), and quantification of Dhc biomarker genes exceeded the values obtained with the vacuum filtration procedure up to 5-fold. Both methods generated reproducible results when volumes containing >10(4) total Dhc target gene copies were collected. Analysis of on-site and off-site biomass collection procedures corroborated the applicability of the Sterivex cartridge for Dhc biomarker quantification in groundwater. Ethene formation coincided with Dhc cell titers of >2 x 10(6) L(-1) and high (i.e., >10(5)) abundance of the vinyl chloride reductive dehalogenase genes vcrA and/or bvcA; however, high Dhc cell titers alone were insufficient to predict ethene formation. Further, ethene formation occurred at sites with high Dhc cell titers but low or no detectable vcrA or bvcA genes, suggesting that other, not yet identified vinyl chloride reductive dehalogenases contribute to ethene formation. On-site biomass collection with Sterivex cartridges avoids problems associated with shipping groundwater and has broad applicability for biomarker monitoring in aqueous samples.


Asunto(s)
Cloro/química , Etilenos/química , Biomarcadores/química , Biomarcadores/metabolismo , Biomasa , Chloroflexi/metabolismo , ADN/química , ADN/metabolismo , ADN Bacteriano/metabolismo , Filtración , Modelos Estadísticos , ARN Ribosómico 16S/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Microbiología del Agua , Contaminantes del Agua/química , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA