RESUMEN
Periodontitis is an oral infectious disease caused by various pathogenic bacteria, such as Porphyromonas gingivalis. Although probiotics and their cellular components have demonstrated positive effects on periodontitis, the beneficial impact of peptidoglycan (PGN) from probiotic Lactobacillus remains unclear. Therefore, our study sought to investigate the inhibitory effect of PGN isolated from L. reuteri (LrPGN) on P. gingivalis-induced inflammatory responses. Pretreatment with LrPGN significantly inhibited the production of interleukin (IL)-1ß, IL-6, and CCL20 in RAW 264.7 cells induced by P. gingivalis lipopolysaccharide (LPS). LrPGN reduced the phosphorylation of PI3K/Akt and MAPKs, as well as NF-κB activation, which were induced by P. gingivalis LPS. Furthermore, LrPGN dose-dependently reduced the expression of Toll-like receptor 4 (TLR4), indicating that LrPGN inhibits periodontal inflammation by regulating cellular signaling cascades through TLR4 suppression. Notably, LrPGN exhibited stronger inhibition of P. gingivalis LPS-induced production of inflammatory mediators compared to insoluble LrPGN and proteinase K-treated LrPGN. Moreover, MDP, a minimal bioactive PGN motif, also dose-dependently inhibited P. gingivalis LPS-induced inflammatory mediators, suggesting that MDP-like molecules present in the LrPGN structure may play a crucial role in the inhibition of inflammatory responses. Collectively, these findings suggest that LrPGN can mitigate periodontal inflammation and could be a useful agent for the prevention and treatment of periodontitis.
Asunto(s)
Endopeptidasas , Limosilactobacillus reuteri , Periodontitis , Humanos , Receptor Toll-Like 4 , Lipopolisacáridos/toxicidad , Peptidoglicano/farmacología , Porphyromonas gingivalis , Fosfatidilinositol 3-Quinasas , Inflamación , Mediadores de InflamaciónRESUMEN
BACKGROUND: The photosynthetic microorganism Chlamydomonas reinhardtii has been approved as generally recognized as safe (GRAS) recently, this can excessively produce carotenoid pigments and fatty acids. Zeaxanthin epoxidase (ZEP), which converts zeaxanthin to violaxanthin, and ADP-glucose pyrophosphorylase (AGP). These are key regulating genes for the xanthophyll and starch pathways in C. reinhardtii respectively. In this study, to produce macular pigment-enriched microalgal oil, we attempted to edit the AGP gene as an additional knock-out target in the zep mutant as a parental strain. RESULTS: Using a sequential CRISPR-Cas9 RNP-mediated knock-out method, we generated double knock-out mutants (dZAs), in which both the ZEP and AGP genes were deleted. In dZA1, lutein (2.93 ± 0.22 mg g-1 DCW: dried cell weight), zeaxanthin (3.12 ± 0.30 mg g-1 DCW), and lipids (450.09 ± 25.48 mg g-1 DCW) were highly accumulated in N-deprivation condition. Optimization of the culture medium and process made it possible to produce pigments and oil via one-step cultivation. This optimization process enabled dZAs to achieve 81% higher oil productivity along with similar macular pigment productivity, than the conventional two-step process. The hexane/isopropanol extraction method was developed for the use of macular pigment-enriched microalgal oil for food. As a result, 196 ± 20.1 mg g-1 DCW of edible microalgal oil containing 8.42 ± 0.92 mg g-1 lutein of oil and 7.69 ± 1.03 mg g-1 zeaxanthin of oil was produced. CONCLUSION: Our research showed that lipids and pigments are simultaneously induced in the dZA strain. Since dZAs are generated by introducing pre-assembled sgRNA and Cas9-protein into cells, antibiotic resistance genes or selective markers are not inserted into the genome of dZA, which is advantageous for applying dZA mutant to food. Therefore, the enriched macular pigment oil extracted from improved strains (dZAs) can be further applied to various food products and nutraceuticals.
Asunto(s)
Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Edición Génica , Pigmento Macular/biosíntesis , Microalgas/genética , Microalgas/metabolismo , Aceites/metabolismo , Sistemas CRISPR-Cas , Medios de Cultivo , Genoma , Glucosa-1-Fosfato Adenililtransferasa/genética , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Lípidos/biosíntesis , Luteína/análisis , Mutación , Aceites/química , Zeaxantinas/análisisRESUMEN
Motor neuron diseases (MNDs) refer to a heterogeneous group of progressive neurologic disorders caused by degeneration of motor neurons. The diseases affect either the upper motor neurons, lower motor neurons, or both, and are characterized by weakness, atrophy, fasciculation, spasticity, and respiratory failure. We report a case of a 61-year-old male patient with no past history of cardiovascular or pulmonary disease, who presented with only dyspnea, and no indication of any other symptom such as muscle weakness, atrophy, or bulbar dysfunction. Neuromuscular conduction study, including a study of the phrenic nerve, confirmed the diagnosis of MND. The patient greatly improved giving respiratory assistance at night, using a noninvasive ventilator. This case indicates that MNDs should be considered as differential diagnoses for patients showing acute respiratory failure of unknown causes. This report will aid in the prompt diagnosis and treatment of MNDs.
RESUMEN
OBJECTIVE: To evaluate pulmonary functions of patients with amyotrophic lateral sclerosis (ALS), Duchenne muscular dystrophy (DMD), and myotonic muscular dystrophy (MMD) at the onset of ventilatory insufficiency. METHODS: This retrospective study included ALS, DMD, and MMD patients with regular outpatient clinic follow-up in the Department of Rehabilitation Medicine at Gangnam Severance Hospital before the application of non-invasive positive pressure ventilation (NIPPV). The patients were enrolled from August 2001 to March 2014. If patients experienced ventilatory insufficiency, they were treated with NIPPV, and their pulmonary functions were subsequently measured. RESULTS: Ninety-four DMD patients, 41 ALS patients, and 21 MMD patients were included in the study. The mean SpO2 was lower in the MMD group than in the other two groups. The mean forced vital capacity (FVC) in the supine position was approximately low to mid 20% on average in DMD and ALS patients, whereas it was 10% higher in MMD patients. ALS patients showed a significantly lower FVC in the supine position than in the sitting position. Maximal insufflation capacity, unassisted peak cough flow, maximum inspiratory pressure (MIP), and maximum expiratory pressure (MEP) were significantly higher in MMD group than in the other groups. MEP was significantly the lowest in DMD patients, followed by in ALS, and MMD patients, in order. CONCLUSION: Disease-specific values of pulmonary function, including FVC, MEP, and MIP, can be accurately used to assess the onset of ventilatory insufficiency in patients with ALS, DMD, and MMD.