Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mar Drugs ; 22(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38786614

RESUMEN

Plant-derived extracellular vesicles (EVs) elicit diverse biological effects, including promoting skin health. EVs isolated from Ecklonia cava (EV-EC) carry heat shock protein 70 (HSP70), which inhibits key regulators such as TNF-α, MAPKs, and NF-κB, consequently downregulating matrix metalloproteinases (MMPs). Aging exacerbates oxidative stress, upregulating MAPK and NF-κB signaling and worsening extracellular matrix degradation in the skin. E. cava-derived phlorotannin (PT) mitigates MAPK and NF-κB signaling. We evaluated the impact of EV-EC and PT on skin rejuvenation using an in vitro keratinocyte senescence model and an in vivo aged-mouse model. Western blotting confirmed the presence of HSP70 in EV-EC. Treatment with EV-EC and PT in senescent keratinocytes increased HSP70 expression and decreased the expression of TNF-α, MAPK, NF-κB, activator protein-1 (AP-1), and MMPs. Oxidative stress was also reduced. Sequential treatment with PT and EV-EC (PT/EV-EC) yielded more significant results compared to individual treatments. The administration of PT/EV-EC to the back skin of aged mice mirrored the in vitro findings, resulting in increased collagen fiber accumulation and improved elasticity in the aged skin. Therefore, PT/EV-EC holds promise in promoting skin rejuvenation by increasing HSP70 expression, decreasing the expression of MMPs, and reducing oxidative stress in aged skin.


Asunto(s)
Vesículas Extracelulares , Proteínas HSP70 de Choque Térmico , Queratinocitos , Estrés Oxidativo , Phaeophyceae , Rejuvenecimiento , Envejecimiento de la Piel , Piel , Animales , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/metabolismo , Phaeophyceae/química , Ratones , Envejecimiento de la Piel/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Piel/efectos de los fármacos , Piel/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Estrés Oxidativo/efectos de los fármacos , Taninos/farmacología , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos
2.
Mar Drugs ; 22(9)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39330302

RESUMEN

Excessive melanogenesis leads to hyperpigmentation-related cosmetic problems. UV exposure increases oxidative stress, which promotes melanogenesis-related signal pathways such as the PKA, microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein-1 (TRP1), and tyrosinase-related protein-2 (TRP2) pathways. Glycine is a source of endogenous antioxidants, including glutathione. Fermented fish collagen (FC) contains glycine; thus, we evaluated the effect of FC on decreasing melanogenesis via decreasing oxidative stress. The glycine receptor (GlyR) and glycine transporter-1 (GlyT1) levels were decreased in UV-irradiated keratinocytes; however, the expression levels of these proteins increased upon treatment with FC. The FC decreased oxidative stress, as indicated by the decreasing expression of NOX1/2/4, increased expression of GSH/GSSG, increased SOD activity, and decreased 8-OHdG expression in UV-irradiated keratinocytes. Administration of conditioned media from FC-treated keratinocytes to melanocytes led to decreased p38, PKC, MITF, TRP1, and TRP2 expression. These changes induced by the FC were also observed in UV-irradiated animal skin. FC treatment increased the expression of GlyR and GlyT, which was accompanied by decreased oxidative stress in the UV-irradiated skin. Moreover, the FC negatively regulated the melanogenesis signaling pathways, leading to decreased melanin content in the UV-irradiated skin. In conclusion, FC decreased UV-induced oxidative stress and melanogenesis in melanocytes and animal skin. FC could be used in the treatment of UV-induced hyperpigmentation problems.


Asunto(s)
Colágeno , Queratinocitos , Melaninas , Estrés Oxidativo , Rayos Ultravioleta , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Animales , Melaninas/biosíntesis , Colágeno/metabolismo , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/efectos de la radiación , Queratinocitos/metabolismo , Peces , Fermentación , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Melanocitos/efectos de la radiación , Antioxidantes/farmacología , Transducción de Señal/efectos de los fármacos , Piel/efectos de los fármacos , Piel/metabolismo , Piel/efectos de la radiación , Melanogénesis
3.
Int J Mol Sci ; 25(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38791217

RESUMEN

The dermal-epidermal junction (DEJ) is essential for maintaining skin structural integrity and regulating cell survival and proliferation. Thus, DEJ rejuvenation is key for skin revitalization, particularly in age-related DEJ deterioration. Radiofrequency (RF) treatment, known for its ability to enhance collagen fiber production through thermal mechanisms and increase heat shock protein (HSP) expression, has emerged as a promising method for skin rejuvenation. Additionally, RF activates Piezo1, an ion channel implicated in macrophage polarization toward an M2 phenotype and enhanced TGF-ß production. This study investigated the impact of RF treatment on HSP47 and HSP90 expression, known stimulators of DEJ protein expression. Furthermore, using in vitro and aged animal skin models, we assessed whether RF-induced Piezo1 activation and the subsequent M2 polarization could counter age-related DEJ changes. The RF treatment of H2O2-induced senescent keratinocytes upregulated the expression of HSP47, HSP90, TGF-ß, and DEJ proteins, including collagen XVII. Similarly, the RF treatment of senescent macrophages increased Piezo1 and CD206 (M2 marker) expression. Conditioned media from RF-treated senescent macrophages enhanced the expression of TGF-ß and DEJ proteins, such as nidogen and collagen IV, in senescent fibroblasts. In aged animal skin, RF treatment increased the expression of HSP47, HSP90, Piezo1, markers associated with M2 polarization, IL-10, and TGF-ß. Additionally, RF treatment enhanced DEJ protein expression. Moreover, RF reduced lamina densa replication, disrupted lesions, promoted hemidesmosome formation, and increased epidermal thickness. Overall, RF treatment effectively enhanced DEJ protein expression and mitigated age-related DEJ structural changes by increasing HSP levels and activating Piezo1.


Asunto(s)
Epidermis , Animales , Epidermis/metabolismo , Epidermis/efectos de la radiación , Ratones , Dermis/metabolismo , Queratinocitos/metabolismo , Macrófagos/metabolismo , Envejecimiento de la Piel/efectos de la radiación , Piel/metabolismo , Piel/efectos de la radiación , Piel/patología , Humanos , Envejecimiento/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas del Choque Térmico HSP47/metabolismo , Proteínas del Choque Térmico HSP47/genética
4.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39000341

RESUMEN

Poly L-lactic acid (PLLA) fillers stimulate collagen synthesis by activating various immune cells and fibroblasts. Piezo1, an ion channel, responds to mechanical stimuli, including changes in extracellular matrix stiffness, by mediating Ca2+ influx. Given that elevated intracellular Ca2+ levels trigger signaling pathways associated with fibroblast proliferation, Piezo1 is a pivotal regulator of collagen synthesis and tissue fibrosis. The aim of the present study was to investigate the impact of PLLA on dermal collagen synthesis by activating Piezo1 in both an H2O2-induced cellular senescence model in vitro and aged animal skin in vivo. PLLA elevated intracellular Ca2+ levels in senescent fibroblasts, which was attenuated by the Piezo1 inhibitor GsMTx4. Furthermore, PLLA treatment increased the expression of phosphorylated ERK1/2 to total ERK1/2 (pERK1/2/ERK1/2) and phosphorylated AKT to total AKT (pAKT/AKT), indicating enhanced pathway activation. This was accompanied by upregulation of cell cycle-regulating proteins (CDK4 and cyclin D1), promoting the proliferation of senescent fibroblasts. Additionally, PLLA promoted the expression of phosphorylated mTOR/S6K1/4EBP1, TGF-ß, and Collagen I/III in senescent fibroblasts, with GsMTx4 treatment mitigating these effects. In aged skin, PLLA treatment similarly upregulated the expression of pERK1/2/ERK1/2, pAKT/AKT, CDK4, cyclin D1, mTOR/S6K1/4EBP1, TGF-ß, and Collagen I/III. In summary, our findings suggest Piezo1's involvement in PLLA-induced collagen synthesis, mediated by heightened activation of cell proliferation signaling pathways such as pERK1/2/ERK1/2, pAKT/AKT, and phosphorylated mTOR/S6K1/4EBP1, underscoring the therapeutic potential of PLLA in tissue regeneration.


Asunto(s)
Colágeno , Fibroblastos , Poliésteres , Animales , Poliésteres/farmacología , Poliésteres/química , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Colágeno/metabolismo , Colágeno/biosíntesis , Canales Iónicos/metabolismo , Ratones , Piel/metabolismo , Piel/efectos de los fármacos , Envejecimiento de la Piel/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Calcio/metabolismo , Transducción de Señal/efectos de los fármacos , Humanos
5.
Int J Mol Sci ; 25(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39062891

RESUMEN

Decreased medial cheek fat volume during aging leads to loss of a youthful facial shape. Increasing facial volume by methods such as adipose-derived stem cell (ASC) injection can produce facial rejuvenation. High-intensity focused ultrasound (HIFU) can increase adipogenesis in subcutaneous fat by modulating cilia on ASCs, which is accompanied by increased HSP70 and decreased NF-κB expression. Thus, we evaluated the effect of HIFU on increasing facial adipogenesis in swine (n = 2) via modulation of ASC cilia. Expression of CD166, an ASC marker, differed by subcutaneous adipose tissue location. CD166 expression in the zygomatic arch (ZA) was significantly higher than that in the subcutaneous adipose tissue in the mandible or lateral temporal areas. HIFU was applied only on the right side of the face, which was compared with the left side, where HIFU was not applied, as a control. HIFU produced a significant increase in HSP70 expression, decreased expression of NF-κB and a cilia disassembly factor (AURKA), and increased expression of a cilia increasing factor (ARL13B) and PPARG and CEBPA, which are the main regulators of adipogenesis. All of these changes were most prominent at the ZA. Facial adipose tissue thickness was also increased by HIFU. Adipose tissue volume, evaluated by magnetic resonance imaging, was increased by HIFU, most prominently in the ZA. In conclusion, HIFU increased ASC marker expression, accompanied by increased HSP70 and decreased NF-κB expression. Additionally, changes in cilia disassembly and length and expression of adipogenesis were observed. These results suggest that HIFU could be used to increase facial volume by modulating adipogenesis.


Asunto(s)
Adipogénesis , Animales , Porcinos , Cilios/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Células Madre/metabolismo , Células Madre/citología , Cara , Grasa Subcutánea/citología , Grasa Subcutánea/metabolismo , Adipocitos/metabolismo , Adipocitos/citología , FN-kappa B/metabolismo
6.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36982581

RESUMEN

Hyperpigmentation stimulated by ultraviolet (UV)-induced melanin overproduction causes various cosmetic problems. UV radiation's activation of the cyclic adenosine monophosphate (cAMP)-mediated cAMP-dependent protein kinase (PKA)/cAMP response element-binding protein (CREB)/microphthalmia-associated transcription factor (MITF) pathway is the main pathway for melanogenesis. However, the secretion of adenosine triphosphate (ATP) from keratinocytes due to UV radiation also leads to melanogenesis. Adenosine, converted from ATP by CD39 and CD73, can activate adenylate cyclase (AC) activity and increase intracellular cAMP expression. cAMP-mediated PKA activation results in dynamic mitochondrial changes that affect melanogenesis via ERK. We evaluated whether radiofrequency (RF) irradiation could decrease ATP release from keratinocytes and suppress the expression of CD39, CD73, and A2A/A2B adenosine receptors (ARs) and the activity of AC and downregulate the PKA/CREB/MITF pathway, which would eventually decrease melanogenesis in vitro in UV-irradiated cells and animal skin. Our results indicate that RF decreased ATP release from UVB-irradiated keratinocytes. When conditioned media (CM) from UVB-irradiated keratinocytes (CM-UVB) were administered to melanocytes, the expressions of CD39, CD73, A2A/A2BARs, cAMP, and PKA increased. However, the expression of these factors decreased when CM from UVB and RF-irradiated keratinocytes (CM-UVB/RF) was administered to melanocytes. The phosphorylation of DRP1 at Ser637, which inhibits mitochondrial fission, increased in UVB-irradiated animal skin and was decreased by RF irradiation. The expression of ERK1/2, which can degrade MITF, was increased using RF treatment in UVB-irradiated animal skin. Tyrosinase activity and melanin levels in melanocytes increased following CM-UVB administration, and these increases were reversed after CD39 silencing. Tyrosinase activity and melanin levels in melanocytes were decreased by CM-UVB/RF irradiation. In conclusion, RF irradiation decreased ATP release from keratinocytes and the expressions of CD39, CD73, and A2A/A2BARs, which decreased AC activity in melanocytes. RF irradiation downregulated the cAMP-mediated PKA/CREB/MITF pathway and tyrosinase activity, and these inhibitory effects can be mediated via CD39 inhibition.


Asunto(s)
Melaninas , Pigmentación de la Piel , Animales , Adenosina Trifosfato/metabolismo , Melaninas/metabolismo , Melanocitos/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Monofenol Monooxigenasa/metabolismo , Transducción de Señal , Rayos Ultravioleta
7.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37175693

RESUMEN

Angiogenesis promotes rejuvenation in multiple organs, including the skin. Heat shock protein 90 (HSP90), hypoxia-inducible factor-1 alpha (HIF-1α), and vascular endothelial growth factor (VEGF) are proangiogenic factors that stimulate the activities of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and extracellular signal-regulated kinase 1/2 (ERK1/2). Poly-D,L-lactic acid (PDLLA), polynucleotide (PN), and calcium hydroxyapatite (CaHA) are dermal fillers that stimulate the synthesis of dermal collagen. However, it is not yet known whether these compounds promote angiogenesis, which leads to skin rejuvenation. Here, we evaluated whether PDLLA, PN, and CaHA stimulate angiogenesis and skin rejuvenation using H2O2-treated senescent macrophages and endothelial cells as an in vitro model for skin aging, and we used young and aged C57BL/6 mice as an in vivo model. Angiogenesis was evaluated via endothelial cell migration length, proliferation, and tube formation after conditioned media (CM) from senescent macrophages was treated with PDLLA, PN, or CaHA. Western blot showed decreased expression levels of HSP90, HIF-1α, and VEGF in senescent macrophages, but higher expression levels of these factors were found after treatment with PDLLA, PN, or CaHA. In addition, after exposure to CM from senescent macrophages treated with PDLLA, PN, or CaHA, senescent endothelial cells expressed higher levels of VEGF receptor 2 (VEGFR2), PI3K, phosphorylated AKT (pAKT), and phosphorylated ERK1/2 (pERK1/2) and demonstrated greater capacities for cell migration, cell proliferation, and tube formation. Based on the levels of 4-hydroxy-2-nonenal, the oxidative stress level was lower in the skin of aged mice injected with PDLLA, PN, or CaHA, while the tumor growth factor (TGF)-ß1, TGF-ß2, and TGF-ß3 expression levels; the density of collagen fibers; and the skin elasticity were higher in the skin of aged mice injected with PDLLA, PN, or CaHA. These effects were greater in PDLLA than in PN or CaHA. In conclusion, our results are consistent with the hypothesis that PDLLA stimulates angiogenesis, leading to the rejuvenation of aged skin. Our study is the first to show that PDLLA, PN, or CaHA can result in angiogenesis in the aged skin, possibly by increasing the levels of HSP90, HIF-1α, and VEGF and increasing collagen synthesis.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Envejecimiento de la Piel , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Peróxido de Hidrógeno/metabolismo , Neovascularización Patológica/metabolismo , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasa/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
8.
Mar Drugs ; 20(5)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35621931

RESUMEN

The in vitro capacity of Ishige okamurae extract (IO) to improve impaired muscle function has been previously examined. However, the mechanism underlying IO-mediated muscle protein metabolism and the role of its component, Ishophloroglucin A (IPA), in mice with dexamethasone (Dexa)-induced muscle atrophy remains unknown. In the present study, we evaluated the effect of IO and IPA supplementation on Dexa-induced muscle atrophy by assessing muscle protein metabolism in gastrocnemius and soleus muscles of mice. IO and IPA supplementation improved the Dexa-induced decrease in muscle weight and width, leading to enhanced grip strength. In addition, IO and IPA supplementation regulated impaired protein synthesis (PI3K and Akt) or degradation (muscle-specific ubiquitin ligase muscle RING finger and atrogin-1) by modulating mRNA levels in gastrocnemius and soleus muscles. Additionally, IO and IPA upregulated mRNA levels associated with muscle growth activation (transient receptor potential vanilloid type 4 and adenosine A1 receptor) or inhibition (myostatin and sirtuin 1) in gastrocnemius and soleus muscle tissues of Dexa-induced mice. Collectively, these results suggest that IO and IO-derived IPA can regulate muscle growth through muscle protein metabolism in Dexa-induced muscle atrophy.


Asunto(s)
Mezclas Complejas , Proteínas Musculares , Atrofia Muscular , Phaeophyceae , Animales , Benzofuranos , Mezclas Complejas/farmacología , Mezclas Complejas/uso terapéutico , Dexametasona/efectos adversos , Dioxinas , Ratones , Proteínas Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/inducido químicamente , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/metabolismo , Phaeophyceae/metabolismo , ARN Mensajero/metabolismo
9.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36012125

RESUMEN

During skin aging, the volume of subcutaneous adipose tissue (sWAT) and the adipogenesis potential of adipose-derived stem cells (ASCs) decrease. It is known that the shortening of cilia length by pro-inflammatory cytokines is related to the decreased adipogenic differentiation of ASCs via increase in Wnt5a/ß-catenin. High-intensity focused ultrasound (HIFU) is known to upregulate heat shock proteins (HSP), which decrease levels of pro-inflammatory cytokines. In this study, we evaluated whether HIFU modulates the cilia of ASCs by upregulating HSP70 and decreasing inflammatory cytokines. HIFU was applied at 0.2 J to rat skin, which was harvested at 1, 3, 7, and 28 days. All results for HIFU-applied animals were compared with control animals that were not treated. HIFU increased expression of HSP70 and decreased expression of NF-κB, IL-6, and TNF-α in sWAT. HIFU decreased the expression of cilia disassembly-related factors (AurA and HDAC9) in ASCs. Furthermore, HIFU increased the expression of cilia assembly-related factors (KIF3A and IFT88), decreased that of WNT5A/ß-catenin, and increased that of the adipogenesis markers PPARγ and CEBPα in sWAT. HIFU increased the number of adipocytes in the sWAT and the thickness of sWAT. In conclusion, HIFU could selectively increase sWAT levels by modulating the cilia of ASCs and be used for skin rejuvenation.


Asunto(s)
Adipogénesis , beta Catenina , Adipocitos/metabolismo , Adipogénesis/fisiología , Tejido Adiposo/metabolismo , Animales , Diferenciación Celular , Cilios , Citocinas/metabolismo , Ratas , Células Madre/metabolismo , Grasa Subcutánea , Ondas Ultrasónicas , beta Catenina/metabolismo
10.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35328415

RESUMEN

It is well known that skin aging is related to the destruction of collagen and elastin fibers by metalloproteinases (MMPs). Aged fibroblasts have a decreased ability to synthesize collagen and elastin. Nuclear factor erythroid 2-related factor 2 (NRF2) involves glyoxalase (GLO) activation, which inhibits the production of advanced glycated end products (AGE) and the expression of its receptor (RAGE). RAGE increases nuclear transcription factor-kappa B (NF-κB), which upregulates MMPs and decreases skin elasticity. NRF2 also decreases M1 macrophages, which secrete tumor necrosis factor-alpha (TNF-α), thereby decreasing AGE production. It is well known that radiofrequency (RF) decreases skin elasticity by increasing collagen synthesis. We evaluated whether RF increases skin elasticity via NRF2/GLO and whether they decrease AGE and RAGE expression in aged animal skin. We also compared the effects of RF based on the modes (monopolar or bipolar) or the combination used. In aged skin, NRF2, GLO-1, and M2 macrophage expression was decreased, and their expression increased when RF was applied. M1 and TNF-α demonstrated increased expression in the aged skin and decreased expression after RF application. AGE accumulation and RAGE, NF-κB, and MMP2/3/9 expression were increased in the aged skin, and they were decreased by RF. The papillary and reticular fibroblast markers showed decreased expression in young skin and increased expression in aged skin. The densities of collagen and elastin fiber in the aged skin were low, and they were increased by RF. In conclusion, RF leads to increased collagen and elastin fibers by increasing NRF2/GLO-1 and modulating M1/M2 polarization, which leads to decreased AGE and RAGE and, consequently, decreased NF-κB, which eventually slows collagen and elastin destruction. RF also leads to increased collagen and elastin fiber synthesis by increasing papillary and reticular fibroblast expression.


Asunto(s)
Lactoilglutatión Liasa , Envejecimiento de la Piel , Animales , Colágeno/metabolismo , Elasticidad , Elastina/metabolismo , Lactoilglutatión Liasa/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Piel/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
11.
Molecules ; 27(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35056769

RESUMEN

Dermal macrophages containing melanin increase skin pigmentation since dermal melanin removal is slower than epidermal melanin removal. Lymphatic vessels are also involved in melanin clearance. We evaluated whether radiofrequency (RF) irradiation induced an increase in HSP90, which promotes lymphangiogenesis by activating the BRAF/MEK/ERK pathway and decreasing tyrosinase activity, in the UV-B exposed animal model. The HSP90/BRAF/MEK/ERK pathway was upregulated by RF. Tyrosinase activity and the VEGF-C/VEGFR 3/PI3K/pAKT1/2/pERK1/2 pathway, which increase lymphangiogenesis, as well as the expression of the lymphatic endothelial marker LYVE-1, were increased by RF. Additionally, the number of melanin-containing dermal macrophages, the melanin content in the lymph nodes, and melanin deposition in the skin were decreased by RF. In conclusion, RF increased HSP90/BRAF/MEK/ERK expression, which decreased tyrosinase activity and increased lymphangiogenesis to eventually promote the clearance of dermal melanin-containing macrophages, thereby decreasing skin pigmentation.


Asunto(s)
Linfangiogénesis/efectos de la radiación , Ondas de Radio , Pigmentación de la Piel/efectos de la radiación , Rayos Ultravioleta , Biomarcadores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas HSP90 de Choque Térmico , Hiperpigmentación/etiología , Hiperpigmentación/metabolismo , Hiperpigmentación/patología , Inmunohistoquímica , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/efectos de la radiación , Melaninas/biosíntesis , Modelos Biológicos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Transducción de Señal/efectos de la radiación , Factor C de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo
12.
Molecules ; 27(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35956878

RESUMEN

Nicotinamide nucleotide transhydrogenase (NNT) is involved in decreasing melanogenesis through tyrosinase degradation induced by cellular redox changes. Nicotinamide is a component of coenzymes, such as NAD+, NADH, NADP+, and NADPH, and its levels are modulated by NNT. Vitamin C and polydeoxyribonucleotide (PDRN) are also known to decrease skin pigmentation. We evaluated whether a mixture of nicotinamide, vitamin C, and PDRN (NVP-mix) decreased melanogenesis by modulating mitochondrial oxidative stress and NNT expression in UV-B-irradiated animals and in an in vitro model of melanocytes treated with conditioned media (CM) from UV-B-irradiated keratinocytes. The expression of NNT, GSH/GSSG, and NADPH/NADP+ in UV-B-irradiated animal skin was significantly decreased by UV-B radiation but increased by NVP-mix treatment. The expression of NNT, GSH/GSSG, and NADPH/NADP+ ratios decreased in melanocytes after CM treatment, although they increased after NVP-mix administration. In NNT-silenced melanocytes, the GSH/GSSG and NADPH/NADP+ ratios were further decreased by CM compared with normal melanocytes. NVP-mix decreased melanogenesis signals, such as MC1R, MITF, TYRP1, and TYRP2, and decreased melanosome transfer-related signals, such as RAB32 and RAB27A, in UV-B-irradiated animal skin. NVP-mix also decreased MC1R, MITF, TYRP1, TYRP2, RAB32, and RAB27A in melanocytes treated with CM from UV-irradiated keratinocytes. The expression of MC1R and MITF in melanocytes after CM treatment was unchanged by NNT silencing. However, the expression of TYRP1, TYRP2, RAB32, and RAB27A increased in NNT-silenced melanocytes after CM treatment. NVP-mix also decreased tyrosinase activity and melanin content in UV-B-irradiated animal skin and CM-treated melanocytes. In conclusion, NVP-mix decreased mitochondrial oxidative stress by increasing NNT expression and decreased melanogenesis by decreasing MC1R/MITF, tyrosinase, TYRP1, and TYRP2.


Asunto(s)
NADP Transhidrogenasas , Animales , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacología , Disulfuro de Glutatión/metabolismo , Melaninas , Melanocitos/metabolismo , Monofenol Monooxigenasa/metabolismo , NADP/metabolismo , NADP Transhidrogenasas/metabolismo , Niacinamida/metabolismo , Niacinamida/farmacología , Polidesoxirribonucleótidos/metabolismo , Vitaminas/metabolismo
13.
Molecules ; 27(4)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35209068

RESUMEN

It is well-known that increased oxidative stress caused by ultraviolet B (UV-B) radiation induces melanogenesis and activates metalloproteinases (MMPs), which degrade collagen and elastin fibers, leading to decreased skin elasticity. Various antioxidant agents, such as vitamin C and niacinamide, have been evaluated for use as treatments for photoaging or skin pigmentation. In this study, we evaluated the ability of a topical liquid formula of polydeoxyribonucleotide (PDRN), vitamin C, and niacinamide (PVN) delivered via a microneedling therapy system (MTS) to attenuate photoaging and pigmentation by increasing nuclear factor erythroid 2-like 2 (NRF2)/heme oxygenase-1 (HO-1) and decreasing MMP expression in a UV-B-radiated animal model. The effects of the PVN were compared with those of individual PDRN and hydroquinone (HQ) compounds. The expression of NRF2/HO-1 significantly increased in response to HQ, PDRN, and PVN in UV-B-radiated animal skin. The activity of nicotinamide adenine dinucleotide phosphate hydrogen oxidase decreased in response to HQ, PDRN, and PVN, and the superoxide dismutase activity increased. The expression of tumor protein p53 and microphthalmia-associated transcription factor and tyrosinase activity decreased in response to HQ, PDRN, and PVN, and this decrease was accompanied by decreased melanin content in the skin. The expression of nuclear factor kappa-light-chain enhancer of activated B cells and MMP2/3/9 decreased in response to HQ, PDRN, and PVN in UV-B-radiated skin. However, the expression of collagen type I α1 chain and the amount of collagen fibers that were evaluated by Masson's trichrome staining increased in response to HQ, PDRN, and PVN. The contents of elastin fibers, fibrillin 1/2 and fibulin 5 increased in response to HQ, PDRN, and PVN. In conclusion, PVN delivered via MTS led to decreased melanogenesis and destruction of collagen and elastin fibers by MMPs, and, thus, PVN decreased skin pigmentation and increased skin elasticity.


Asunto(s)
Ácido Ascórbico/química , Factor 2 Relacionado con NF-E2/metabolismo , Niacinamida/administración & dosificación , Polidesoxirribonucleótidos/administración & dosificación , Fenómenos Fisiológicos de la Piel/efectos de los fármacos , Pigmentación de la Piel/efectos de los fármacos , Piel/efectos de los fármacos , Piel/metabolismo , Biomarcadores , Elasticidad , Expresión Génica , Inmunohistoquímica , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Melaninas/biosíntesis , Factor 2 Relacionado con NF-E2/genética , Rayos Ultravioleta
14.
Mar Drugs ; 19(9)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34564157

RESUMEN

Increased inflammation is the main pathophysiology of nonalcoholic fatty liver disease (NAFLD). Inflammation affects lymphatic vessel function that contributes to the removal of immune cells or macromolecules. Dysfunctional lymphatic vessels with decreased permeability are present in NAFLD. High-fat diet (HFD) is known to increase body weight, food intake, and inflammation in the liver. Previously, it was reported that Ecklonia cava extracts (ECE) decreased food intake or weight gain, and low-calorie diet and weight loss is known as a treatment for NAFLD. In this study, the effects of ECE and dieckol (DK)-which is one component of ECE that decreases inflammation and increases lymphangiogenesis and lymphatic drainage by controlling lymphatic permeability in high-fat diet (HFD)-fed mice-on weight gain and food intake were investigated. ECE and DK decreased weight gain and food intake in the HFD-fed mice. NAFLD activities such as steatosis, lobular inflammation, and ballooning were increased by HFD and attenuated by ECE and DK. The expression of inflammatory cytokines such as IL-6 and TNF-α and infiltration of M1 macrophages were increased by HFD, and they were decreased by ECE or DK. The signaling pathways of lymphangiogenesis, VEGFR-3, PI3K/pAKT, and pERK were decreased by HFD, and they were restored by either ECE or DK. The expression of VE-cadherin (which represents lymphatic junctional function) was increased by HFD, although it was restored by either ECE or DK. In conclusion, ECE and DK attenuated NAFLD by decreasing weight gain and food intake, decreasing inflammation, and increasing lymphangiogenesis, as well as modulating lymphatic vessel permeability.


Asunto(s)
Antiinflamatorios/uso terapéutico , Benzofuranos/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Phaeophyceae , Extractos Vegetales/uso terapéutico , Administración Oral , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacología , Organismos Acuáticos , Benzofuranos/administración & dosificación , Benzofuranos/farmacología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Ingestión de Energía/efectos de los fármacos , Hígado/efectos de los fármacos , Vasos Linfáticos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología
15.
Mar Drugs ; 19(6)2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-34070893

RESUMEN

Nonalcoholic fatty liver disease (NAFLD), which promotes serious health problems, is related to the increase in the nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome and pyroptosis by a high-fat diet (HFD). Whether dieckol (DK), a component of Ecklonia cava extracts (ECE), attenuated NAFLD in an HFD-induced NAFLD animal model was evaluated. The expression of high mobility group box 1/Toll-like receptor 4/nuclear factor-κB, which initiated the NLRP3 inflammasome, was increased in the liver of HFD-fed animals and significantly decreased with ECE or DK administration. The expression of NLRP3/ASC/caspase-1, which are components of the NLRP3 inflammasome, and the number of pyroptotic cells were increased by HFD and decreased with ECE or DK administration. The accumulation of triglycerides and free fatty acids in the liver was increased by HFD and decreased with ECE or DK administration. The histological NAFLD score was increased by HFD and decreased with ECE or DK administration. The expression of lipogenic genes (FASN, SREBP-2, PPARγ, and FABP4) increased and that of lipolytic genes (PPARα, CPT1A, ATGL, and HSL) was decreased by HFD and attenuated with ECE or DK administration. In conclusion, ECE or DK attenuated NAFLD by decreasing the NLRP3 inflammasome and pyroptosis.


Asunto(s)
Benzofuranos/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Animales , Benzofuranos/farmacología , Carnitina O-Palmitoiltransferasa/genética , Dieta Alta en Grasa , Expresión Génica/efectos de los fármacos , Proteína HMGB1/inmunología , Inflamasomas/inmunología , Lipasa/genética , Lipólisis/efectos de los fármacos , Lipólisis/genética , Hígado/efectos de los fármacos , Hígado/inmunología , Masculino , Ratones Endogámicos C57BL , FN-kappa B/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/inmunología , PPAR alfa/genética , Piroptosis/efectos de los fármacos , Receptor Toll-Like 4/inmunología
16.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34360821

RESUMEN

Dexamethasone (Dexa), frequently used as an anti-inflammatory agent, paradoxically leads to muscle inflammation and muscle atrophy. Receptor for advanced glycation end products (RAGE) and Toll-like receptor 4 (TLR4) lead to nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome formation through nuclear factor-κB (NF-κB) upregulation. NLRP3 inflammasome results in pyroptosis and is associated with the Murf-1 and atrogin-1 upregulation involved in protein degradation and muscle atrophy. The effects of Ecklonia cava extract (ECE) and dieckol (DK) on attenuating Dexa-induced muscle atrophy were evaluated by decreasing NLRP3 inflammasome formation in the muscles of Dexa-treated animals. The binding of AGE or high mobility group protein 1 to RAGE or TLR4 was increased by Dexa but significantly decreased by ECE or DK. The downstream signaling pathways of RAGE (c-Jun N-terminal kinase or p38) were increased by Dexa but decreased by ECE or DK. NF-κB, downstream of RAGE or TLR4, was increased by Dexa but decreased by ECE or DK. The NLRP3 inflammasome component (NLRP3 and apoptosis-associated speck-like), cleaved caspase -1, and cleaved gasdermin D, markers of pyroptosis, were increased by Dexa but decreased by ECE and DK. Interleukin-1ß/Murf-1/atrogin-1 expression was increased by Dexa but restored by ECE or DK. The mean muscle fiber cross-sectional area and grip strength were decreased by Dexa but restored by ECE or DK. In conclusion, ECE or DK attenuated Dexa-induced muscle atrophy by decreasing NLRP3 inflammasome formation and pyroptosis.


Asunto(s)
Benzofuranos/farmacología , Dexametasona/efectos adversos , Glucocorticoides/efectos adversos , Inflamasomas/efectos de los fármacos , Atrofia Muscular , Piroptosis/efectos de los fármacos , Animales , Inflamasomas/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Atrofia Muscular/inducido químicamente , Atrofia Muscular/tratamiento farmacológico , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Extractos Vegetales/farmacología
17.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921823

RESUMEN

Hypertension induces renal fibrosis or tubular interstitial fibrosis, which eventually results in end-stage renal disease. Epithelial-to-mesenchymal transition (EMT) is one of the underlying mechanisms of renal fibrosis. Though previous studies showed that Ecklonia cava extracts (ECE) and dieckol (DK) had inhibitory action on angiotensin (Ang) I-converting enzyme, which converts Ang I to Ang II. It is known that Ang II is involved in renal fibrosis; however, it was not evaluated whether ECE or DK attenuated hypertensive nephropathy by decreasing EMT. In this study, the effect of ECE and DK on decreasing Ang II and its down signal pathway of angiotensin type 1 receptor (AT1R)/TGFß/SMAD, which is related with the EMT and restoring renal function in spontaneously hypertensive rats (SHRs), was investigated. Either ECE or DK significantly decreased the serum level of Ang II in the SHRs. Moreover, the renal expression of AT1R/TGFß/SMAD was decreased by the administration of either ECE or DK. The mesenchymal cell markers in the kidney of SHRs was significantly decreased by ECE or DK. The fibrotic tissue of the kidney of SHRs was also significantly decreased by ECE or DK. The ratio of urine albumin/creatinine of SHRs was significantly decreased by ECE or DK. Overall, the results of this study indicate that ECE and DK decreased the serum levels of Ang II and expression of AT1R/TGFß/SMAD, and then decreased the EMT and renal fibrosis in SHRs. Furthermore, the decrease in EMT and renal fibrosis could lead to the restoration of renal function. It seems that ECE or DK could be beneficial for decreasing hypertensive nephropathy by decreasing EMT and renal fibrosis.


Asunto(s)
Benzofuranos/uso terapéutico , Angiotensina II/metabolismo , Animales , Benzofuranos/farmacología , Presión Sanguínea/efectos de los fármacos , Dioxinas/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fibrosis/tratamiento farmacológico , Fibrosis/metabolismo , Hipertensión Renal/tratamiento farmacológico , Hipertensión Renal/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Masculino , Nefritis/tratamiento farmacológico , Nefritis/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos
18.
Int J Mol Sci ; 22(19)2021 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-34639063

RESUMEN

Autophagy is involved in the degradation of melanosomes and the determination of skin color. TLR4 and tumor necrosis factor (TNF) signaling upregulates NF-kB expression, which is involved in the upregulation of mTOR. The activation of mTOR by UV-B exposure results in decreased autophagy, whereas radiofrequency (RF) irradiation decreases TLR4 and TNF receptor (TNFR) expression. We evaluated whether RF decreased skin pigmentation by restoring autophagy by decreasing the expression of TLR4 or TNFR/NF-κB/mTOR in the UV-B-irradiated animal model. UV-B radiation induced the expressions of TNFR, TLR, and NF-κB in the skin, which were all decreased by RF irradiation. RF irradiation also decreased phosphorylated mTOR expression and upregulated autophagy initiation factors such as FIP200, ULK1, ULK2, ATG13, and ATG101 in the UV-B-irradiated skin. Beclin 1 expression and the expression ratio of LC3-I to LC3-II were increased by UV-B/RF irradiation. Furthermore, melanin-containing autophagosomes increased with RF irradiation. Fontana-Masson staining showed that the amount of melanin deposition in the skin was decreased by RF irradiation. This study showed that RF irradiation decreased skin pigmentation by restoring melanosomal autophagy, and that the possible signal pathways which modulate autophagy could be TLR4, TNFR, NF-κB, and mTOR.


Asunto(s)
Autofagia/efectos de la radiación , Melaninas/biosíntesis , Melanosomas/metabolismo , Ondas de Radio , Pigmentación de la Piel/efectos de la radiación , Rayos Ultravioleta , Biomarcadores , Células Cultivadas , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Inmunohistoquímica , FN-kappa B/metabolismo , Receptores del Factor de Necrosis Tumoral/genética , Receptores del Factor de Necrosis Tumoral/metabolismo , Pigmentación de la Piel/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Receptor Toll-Like 4/metabolismo
19.
Molecules ; 26(5)2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33800730

RESUMEN

Rosacea is a skin inflammatory condition that is accompanied by not only redness and flushing but also unseen symptoms, such as burning, stinging, and itching. TRPV1 expression in UVB-exposed skin can lead to a painful burning sensation. Upregulated TRPV1 expression helps release neuropeptides, including calcitonin gene-related peptide, pituitary adenylate cyclase-activating polypeptide, and vasoactive intestinal peptide, which can activate macrophage and inflammatory molecules. In this study, we found that radiofrequency (RF) irradiation reduced TRPV1 activation and neuropeptide expression in a UVB-exposed in vivo model and UVB- or heat-treated in an in vitro model. RF irradiation attenuated neuropeptide-induced macrophage activation and inflammatory molecule expression. Interestingly, the burning sensation in the skin of UVB-exposed mice and patients with rosacea was significantly decreased by RF irradiation. These results can provide experimental and molecular evidence on the effective use of RF irradiation for the burning sensation in patients with rosacea.


Asunto(s)
Hipertermia Inducida/métodos , Inflamación/prevención & control , Dolor/prevención & control , Rosácea/complicaciones , Piel/patología , Canales Catiónicos TRPV/metabolismo , Terapia Ultravioleta/métodos , Animales , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Neuropéptidos/toxicidad , Dolor/etiología , Dolor/metabolismo , Dolor/patología , Piel/metabolismo , Piel/efectos de la radiación , Canales Catiónicos TRPV/genética
20.
Molecules ; 26(5)2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33670841

RESUMEN

Ultraviolet B (UVB) exposure activates various inflammatory molecules of keratinocytes in the epidermis layer. Such UVB-mediated skin inflammation leaves post-inflammatory hyperpigmentation (PIH). Reports show a close relationship between PIH and high-mobility group box 1 (HMGB1) and its receptors. General clinical treatments of PIH, such as oral medication and laser treatment, have reported side effects. Recent studies reported the effects of radiofrequency (RF) irradiation on restoring dermal collagen, modulating the dermal vasculature, and thickening the basement membrane. To validate how RF regulates the inflammatory molecules from UVB-irradiated keratinocytes, we used UVB-radiated keratinocytes and macrophages, as well as animal skin. In addition, we examined two cases of RF-irradiated skin inflammatory diseases. We validated the effects of RF irradiation on keratinocytes by measuring expression levels of HMGB1, Toll-like receptors (TLRs), and other inflammatory factors. The results show that the RF modulates UVB-radiated keratinocytes to secrete fewer inflammatory factors and also modulates the expression of macrophages from HMGB1, TLRs, and inflammatory factors. RF irradiation could alleviate inflammatory skin diseases in patients. RF irradiation can regulate the macrophage indirectly through modulating the keratinocyte and inflammatory molecules of macrophages reduced in vitro and in vivo. Although the study is limited by the low number of cases, it demonstrates that RF irradiation can regulate skin inflammation in patients.


Asunto(s)
Dermatitis/radioterapia , Activación Enzimática/efectos de la radiación , Proteína HMGB1/metabolismo , Hiperpigmentación/radioterapia , Receptores Toll-Like/metabolismo , Animales , Proliferación Celular/efectos de la radiación , Citocinas/metabolismo , Modelos Animales de Enfermedad , Epidermis/efectos de los fármacos , Regulación de la Expresión Génica , Humanos , Hiperpigmentación/complicaciones , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Masculino , Ratones , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA