Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
J Am Chem Soc ; 146(2): 1476-1483, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38166110

RESUMEN

Ion conductors comprising noncentrosymmetric frameworks have emerged as new functional materials. However, strongly correlated polarity functionality and ion transport have not been achieved. Herein, we report a ferroelectric proton conductor, K2MnN(CN)4·H2O (1·H2O), exhibiting the strong correlation between its polar skeleton and conductive ions that generate anomalous ferroelectricity via the proton-bias phenomenon. The application of an electric field of ±1 kV/cm (0.1 Hz) on 1·H2O at 298 K produced the ferroelectricity (polarization = 1.5 × 104 µC/cm2), which was enhanced by the ferroelectric-skeleton-trapped conductive protons. Furthermore, the strong polarity-proton transport coupling of 1·H2O induced a proton-rectification-like directional ion-conductive behavior that could be adjusted by the magnitude and direction of DC electric fields. Moreover, 1·H2O exhibited reversible polarity switching between the polar 1·H2O and its dehydrated form, 1, with a centrosymmetric structure comprising an order-disorder-type transition of the nitrido-bridged chains.

2.
J Am Chem Soc ; 145(22): 11997-12006, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37192338

RESUMEN

Metal-organic polyhedra (MOPs) can act as elementary structural units for the design of modular porous materials; however, their association with biological systems remains greatly restricted by their typically low stabilities and solubilities in water. Herein, we describe the preparation of novel MOPs bearing either anionic or cationic groups and exhibiting a high affinity for proteins. Simple mixing of the protein bovine serum albumin (BSA) and ionic MOP aqueous solutions resulted in the spontaneous formation of MOP-protein assemblies, in a colloidal state or as solid precipitates depending on the initial mixing ratio. The versatility of the method was further illustrated using two enzymes, catalase and cytochrome c, with different sizes and isoelectric points (pI's) below and above 7. This mode of assembly led to the high retention of catalytic activity and enabled recyclability. Furthermore, the co-immobilization of cytochrome c with highly charged MOPs resulted in a substantial 44-fold increase of its catalytic activity.


Asunto(s)
Citocromos c , Agua , Metales/química , Cationes
3.
Inorg Chem ; 62(45): 18707-18713, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37906718

RESUMEN

The synthesis of Janus-type layers, which possess front and back sides that consist of different structures, remains a major challenge in the field of two-dimensional materials. In this study, two Janus-type layered coordination polymers, namely, CuII(NEtH2)(NMe2H·H2O)CuI(CN)3 (1) and CuII(NMe2H)(NMe2H·H2O)CuI(CN)3 (2), were synthesized via a simple one-pot procedure using copper(II) nitrate and sodium cyanido in mixed solutions of dimethylamine and ethylamine. Uniquely, 1 and 2 were composed of cyanido-bridged neutral layers and exhibited a CuICuII mixed-valent state. Meanwhile, using a solution of pure dimethylamine for the synthesis yielded the monovalent three-dimensional framework (NMe2H2)[CuI2(CN)3] (3). Results indicated that the simultaneous use of two mixed amines gave rise to the controlled reduction of CuII ions during the reaction. In addition, each face of the layers was coordinated by different amines on the axial positions of the CuII sites, resulting in anisotropic Janus layers. Furthermore, the thermal expansion behavior of 2 was investigated, demonstrating that the neutral [CuICuII(CN)3] layer was relatively rigid compared with the analogous anionic [CuI2(CN)3]- layer.

4.
Angew Chem Int Ed Engl ; 62(32): e202306853, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37340936

RESUMEN

We synthesized a (1-propylpyridinium)2 [ReN(CN)4 ]-type organic-inorganic hybrid exhibiting water-vapor-induced drastic structural changes of the [ReN(CN)4 ]2- assemblies. Specifically, upon exposure to water vapor, dehydrated nitrido-bridged chains were converted to hydrated cyanido-bridged tetranuclear clusters via rearrangements of large molecular building units in the crystals. These switchable assembly forms display substantially different photo-physical properties, although in both cases the emission is caused by a metal-centered d-d transition. The nitrido-bridged chain exhibited a near-infrared (749 nm) emission, which blue-shifted as the temperature increased, while a visible (561 nm) emission and its red shift was demonstrated by the cyanido-bridged cluster.

5.
Inorg Chem ; 61(51): 21123-21130, 2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36521031

RESUMEN

The negative thermal expansion (NTE) of solid-state materials is of significance in various fields, but a very rare phenomenon. In this study, we carried out a meta-analysis for the anisotropic thermal expansion behavior of fifteen two-dimensional coordination polymers [M(salen)]2[M'(CN)4(solvent)] (M = Mn, Fe; M' = MnN, ReN, Pt, Pt(I2)x; x = 0.18, 0.45, 0.85, 1.0; solvent = H2O, MeOH, MeCN) with a newly synthesized [Fe(salen)]2[MnN(CN)4(MeCN)]. Consequently, we successfully demonstrate the unusual NTE of the undulating coordination layers by an expansion deformation of the layers via strong interlayer interaction within the layer stacking. Notably, the layer volume of [Mn(salen)]2[ReN(CN)4] with its powder form decreases with a large NTE coefficient, αlayer-volume = -27 × 10-6 K-1 (100-500 K). This is a significantly large value despite the increase in layer thickness along the layer contraction based on the anisotropic transformation of undulating layers. Conversely, the analysis demonstrates that the chemical modification of the layers to enhance intralayer interaction rather than interlayer interaction switches a direction of the layer anisotropy, yielding positive thermal expansion materials with the coefficient of the layer volume reaching +92 × 10-6 K-1.

6.
Inorg Chem ; 61(39): 15638-15644, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36130162

RESUMEN

Chemical responsivity in materials is essential to build systems with switchable functionalities. However, polarity-switchable materials are still rare because inducing a symmetry breaking of the crystal structure by adsorbing chemical species is difficult. In this study, we demonstrate that a molecular organic-inorganic hybrid crystal of (NEt4)2[MnN(CN)4] (1) undergoes polarity switching induced by water vapor and transforms into a rare example of proton-conducting second-harmonic-generation-active material. Centrosymmetric 1 transforms into noncentrosymmetric polar 1·3H2O and 1·MeOH by accommodating water and methanol molecules, respectively. However, only water vapor causes a spontaneous single-crystal-to-single-crystal transition. Moreover, 1·3H2O shows proton conduction with 2.3 × 10-6 S/cm at 298 K and a relative humidity of 80%.

7.
Phys Chem Chem Phys ; 24(27): 16680-16686, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35766583

RESUMEN

The ligand field (LF) of transition metal ions is a crucial factor in realizing the mechanism of novel physical and chemical properties. However, the low-crystallinity state, including the amorphous state, precludes the clarification of the electronic structural relationship of transition metal ions using crystallographic techniques, ultraviolet and infrared optical methods, and magnetometry. Here, we demonstrate that soft X-ray 2p → 3d core-level absorption spectroscopy (L2,3-edge XAS) systematically revealed the local 3d electronic states, including in the LF, of nitrogen-coordinated transition-metal ions for low-crystallinity cyanide-bridged metal-organic frameworks (MOFs) M[Ni(CN)4] (MNi; M = Mn, Fe, Co, Ni) and Ni[Pd(CN)4] (NiPd). In NiNi and NiPd, N-coordinated Ni ions with square-planar symmetry exhibit strong orbital hybridization and ligand-to-metal charge transfer effects. In MnNi, FeNi, and CoNi, the correlation between the crystalline electric field splitting in the LF and the transition metal-nitrogen bonding length is revealed using the multiplet LF theory. Regardless of the different local symmetries, our results indicate that L2,3-edge XAS is a powerful tool for gaining element-specific knowledge about the transition-metal ion characterizing the functionality of low-crystallinity MOFs and will be the foundation for an attractive platform, such as adsorption/desorption materials.

8.
Chemistry ; 27(72): 18135-18140, 2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-34741369

RESUMEN

Layer flexibility in two-dimensional coordination polymers (2D-CPs) contributes to several functional materials as it results in anisotropic structural response to external stimuli. Chemical modification is a common technique for modifying layer structures. This study demonstrates that crystal morphology of a cyanide-bridged 2D-CP of type [Mn(salen)]2 [ReN(CN)4 ] (1) consisting of flexible undulating layers significantly impacts the layer configuration and assembly. Nanoplates of 1 showed an in-plane contraction of layers with a longer interlayer distance compared to the micrometer-sized rod-type particles. These effects by crystal morphology on the structure of the 2D-CP impacted the structural flexibility, resulting in dual-functional changes: the enhancement of the sensitivity of structural transformation to water adsorption and modification of anisotropic thermal expansion of 1. Moreover, the nanoplates incorporated new adsorption sites within the layers, resulting in the uptake of an additional water molecule compared to the micrometer-sized rods.

9.
Inorg Chem ; 60(12): 8851-8860, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34081436

RESUMEN

Mastering nanostructuration of functional materials into electronic devices is presently an essential task in materials science. This is particularly relevant for spin crossover (SCO) compounds, whose properties are extremely sensitive to size reduction. Indeed, the search for materials displaying strong cooperative hysteretic SCO properties operative at the nanoscale close near room temperature is extremely challenging. In this context, we describe here the synthesis and characterization of 20-30 nm surfactant-free nanocrystals of the FeII Hofmann-type polymer {FeII(pz)[PtII,IVIx(CN)4]} (pz = pyrazine), which affords the first example of a robust three-dimensional coordination polymer, substantially keeping operational thermally induced SCO bistability at such a scale.

10.
Inorg Chem ; 60(5): 3338-3344, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33591169

RESUMEN

Amorphous coordination polymers and metal-organic frameworks (MOFs) have attracted much attention owing to their various functionalities. Here, we demonstrate the tunable water adsorption behavior of a series of amorphous cyanide-bridged MOFs with different metals (M[Ni(CN)4]: MNi; M = Mn, Fe, and Co). All three compounds adsorb up to six water molecules at a certain vapor pressure (Pads) and undergo conversion to crystalline Hofmann-type MOFs, M(H2O)2[Ni(CN)4]·4H2O (MNi-H2O; M = Mn, Fe, and Co). The Pads of MnNi, FeNi, and CoNi for water adsorption is P/P0 = 0.4, 0.6, and 0.9, respectively. Although the amorphous nature of these materials prevented structural elucidation using X-ray crystallography techniques, the local-scale structure around the N-coordinated M2+ centers was analyzed using L2,3-, K-edge X-ray absorption fine structure, and magnetic measurements. Upon hydration, the coordination geometry of these metal centers changed from tetrahedral to octahedral, resulting in significant reorganization of the MOF local structure. On the other hand, Ni[Ni(CN)4] (NiNi) containing square-planar Ni2+ centers did not undergo significant structural transformation and therefore abruptly adsorbed H2O in the low-pressure region. We could thus define how changes in the bond lengths and coordination geometry are related to the adsorption properties of amorphous MOF systems.

11.
Inorg Chem ; 60(9): 6140-6146, 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33853327

RESUMEN

The excited-state energy was tuned successfully by guest molecules in a cyanide-bridged luminescent coordination polymer (CP). Methanol or ethanol vapor reversibly and significantly changed the luminescent color of the CP between green and yellow (Δλem = 32 nm). These vapors did not significantly affect the environment around the luminophore in the ground state of the CP, whereas they modulated the excited states for the resulting bathochromic shift. The time-resolved photoluminescent spectra of the CP systems showed that solvent adsorption enhanced the energetic relaxation in the excited states. Furthermore, time-resolved infrared spectroscopy indicated that cyanide bridging in the CP became more flexible in the excited states than that in the ground state, highlighting the sensitivity of the excited states to external stimuli, such as the guest vapor. Overall, guest-tunable excited states will allow the more straightforward design of sensing materials by characterizing the transient excited states.

12.
Angew Chem Int Ed Engl ; 60(24): 13603-13608, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33723910

RESUMEN

We demonstrate a fluid-fluid phase separation in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes using a metal complex lipid of type [Mn(L1)] (1; HL1=1-(2-hydroxybenzamide)-2-(2-hydroxy-3-formyl-5-hexadecyloxybenzylideneamino)ethane). Small amount of 1 produces two separated domains in DMPC, whose phase transition temperatures of lipids (Tc ) are both lower than that of the pristine DMPC. Variable temperature fluorescent microscopy for giant-unilamellar vesicles of DMPC/1 hybrids demonstrates that visible phase separations remain in fluid phases up to 37 °C, which is clearly over the Tc of DMPC. This provides a new dimension for the application of metal complex lipids toward controlling lipid distributions in fluid membranes.

13.
Angew Chem Int Ed Engl ; 60(21): 11688-11694, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-33594724

RESUMEN

Controlling gas sorption by simple pore modification is important in molecular recognition and industrial separation processes. In particular, it is challenging to realize the inverse selectivity, which reduces the adsorption of a high-affinity gas and increases the adsorption of a low-affinity gas. Herein, an "opposite action" strategy is demonstrated for boosting CO2 /C2 H2 selectivity in porous coordination polymers (PCPs). A precise steric design of channel pores using an amino group as an additional interacting site enabled the synergetic increase in CO2 adsorption while suppressing the C2 H2 adsorption. Based on this strategy, two new ultramicroporous PCP physisorbents that are isostructural were synthesised. They exhibited the highest CO2 uptake and CO2 /C2 H2 volume uptake ratio at 298 K. Origin of this specific selectivity was verified by detailed density functional theory calculations. The breakthrough separation performances with remarkable stability and recyclability of both the PCPs render them relevant materials for C2 H2 purification from CO2 /C2 H2 mixtures.

14.
Angew Chem Int Ed Engl ; 59(43): 19254-19259, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-32662185

RESUMEN

Metal node design is crucial for obtaining structurally diverse coordination polymers (CPs) and metal-organic frameworks with desirable properties; however, FeII ions are exclusively six-coordinated. Herein, we present a cyanide-bridged three-dimensional (3D) CP, FePd(CN)4 , bearing four-coordinate FeII ions, which is synthesized by thermal treatment of a two-dimensional (2D) six-coordinate FeII CP, Fe(H2 O)2 Pd(CN)4 ⋅4 H2 O, to remove water molecules. Atomic-resolution transmission electron microscopy and powder X-ray and neutron diffraction measurements revealed that the FePd(CN)4 structure is composed of a two-fold interpenetrated PtS topology network, where the FeII center demonstrates an intermediate geometry between tetrahedral and square-planar coordination. This four-coordinate FeII center with the distorted geometry can act as a thermo-responsive flexible node in the PtS network.

15.
Angew Chem Int Ed Engl ; 59(41): 17931-17937, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32608036

RESUMEN

Cell membranes contain lateral systems that consist of various lipid compositions and actin cytoskeleton, providing two-dimensional (2D) platforms for chemical reactions. However, such complex 2D environments have not yet been used as a synthetic platform for artificial 2D nanomaterials. Herein, we demonstrate the direct synthesis of 2D coordination polymers (CPs) at the liquid-cell interface of the plasma membrane of living cells. The coordination-driven self-assembly of networking metal complex lipids produces cyanide-bridged CP layers with metal ions, enabling "pseudo-membrane jackets" that produce long-lived micro-domains with a size of 1-5 µm. The resultant artificial and visible phase separation systems remain stable even in the absence of actin skeletons in cells. Moreover, we show the cell application of the jackets by demonstrating the enhancement of cellular calcium response to ATP.


Asunto(s)
Polímeros/química , Animales , Células CHO , Membrana Celular/química , Cricetulus , Termodinámica
16.
Inorg Chem ; 58(19): 12739-12747, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31539234

RESUMEN

Two-dimensional Hofmann-type coordination polymers of type Mn(H2O)2[Pd(CN)4]·xH2O (1·xH2O; x = 0, 1, and 4), Mn(H2O)(MeOH)[Pd(CN)4]·2MeOH (2·2MeOH), and Mn(MeOH)2[Pd(CN)4]·MeOH (3·MeOH) have been synthesized. The homosolvent-bound 1·4H2O, 1·H2O, and 3·MeOH polymers consist of undulating layer structures, whereas the structure of heterosolvent-bound 2·2MeOH consists of "Janus-like" flat layers in which water-bound and MeOH-bound-sides are present. 1·4H2O and 1·H2O exhibited anisotropic two-dimensional thermal expansions involving structural transformations of the undulating layers; one layer axis expands while the other contracts. 2·2MeOH exhibits anisotropic thermal expansion in which the flat layers shift sideways as the temperature is increased, with colossal interlayer expansion occurring (αc = +200 MK-1 over 140-180 K, αc = +165 MK-1 over 200-280 K). 3·MeOH also showed colossal interlayer expansion (αc = +216 MK-1) together with expansion of the undulating layers.

17.
Langmuir ; 34(4): 1666-1672, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29323910

RESUMEN

Coordination polymer (CP) nanoparticles (NPs) formed by a self-assembly of organic ligands and metal ions are one of the attractive materials for molecular capture and deliver/release in aqueous media. Control of particle size and prevention of aggregation among CP NPs are important factors for improving their adsorption capability in water. We demonstrate here the potential of a liposome incorporating an antibiotic ion channel as a vessel for synthesizing Prussian blue (PB) NPs, being a typical CP. In the formation of PB NPs within liposomes, the influx rate of Fe2+ ions into liposome encapsulated [Fe(CN)6]3- through channels was fundamental for the change of NPs' sizes. The optimized PB NP-liposome composite showed higher adsorption capacity of Cs+ ions than that of aggregated PB NPs that are prepared without liposome in aqueous media.


Asunto(s)
Cesio/química , Ferrocianuros/química , Canales Iónicos/química , Liposomas/química , Liposomas/síntesis química , Nanopartículas/química , Adsorción , Polímeros/química
18.
Angew Chem Int Ed Engl ; 57(40): 13066-13070, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30105766

RESUMEN

Inorganic chemical cells (iCHELLs) are compartment structures consisting of polyoxometalates (POMs) and cations, offering structured and confined reaction spaces bounded by membranes. We have constructed a system capable of efficient anisotropic and hierarchical photo-induced electron transfer across the iCHELL membrane. Mimicking photosynthesis, our system uses proton gradients between the compartment and the bulk to drive efficient conversion of light into chemical energy, producing hydrogen upon irradiation. This illustrates the power of the iCHELL approach for catalysis, where the structure, compartmentalisation and variation in possible components could be utilised to approach a wide range of reactions.

19.
Angew Chem Int Ed Engl ; 57(31): 9823-9827, 2018 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-29896769

RESUMEN

The palladium-hydrogen system is one of the most famous hydrogen-storage systems. Although there has been much research on ß-phase PdH(D)x , we comprehensively investigated the nature of the interaction between Pd and H(D) in α-phase PdH(D)x (x<0.03 at 303 K), and revealed the existence of Pd-H(D) chemical bond for the first time, by various in situ experimental techniques and first-principles theoretical calculations. The lattice expansion, magnetic susceptibility, and electrical resistivity all provide evidence. In situ solid-state 1 H and 2 H NMR spectroscopy and first-principles theoretical calculations revealed that a Pd-H(D) chemical bond exists in the α phase, but the bonding character of the Pd-H(D) bond in the α phase is quite different from that in the ß phase; the nature of the Pd-H(D) bond in the α phase is a localized covalent bond whereas that in the ß phase is a metallic bond.

20.
Inorg Chem ; 54(17): 8529-35, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26280936

RESUMEN

Proton conduction of the La(III)M(III) compounds, LaM(ox)3·10H2O (abbreviated to LaM; M = Cr, Co, Ru, La; ox(2-) = oxalate) is studied in view of their networks. LaCr and LaCo have a ladder structure, and the ladders are woven to form a channel network. LaRu and LaLa have a honeycomb sheet structure, and the sheets are combined to form a layer network. The occurrence of these structures is explained by the rigidness versus flexibility of [M(ox)3](3-) in the framework with large La(III). The channel networks of LaCr and LaCo show a remarkably high proton conductivity, in the range from 1 × 10(-6) to 1 × 10(-5) S cm(-1) over 40-95% relative humidity (RH) at 298 K, whereas the layer networks of LaCr and LaCo show a lower proton conductivity, ∼3 × 10(-8) S cm(-1) (40-95% RH, 298 K). Activation energy measurements demonstrate that the channels filled with water molecules serve as efficient pathways for proton transport. LaCo was gradually converted to La(III)Co(II)(ox)2.5·4H2O, which had no channel structure and exhibited a low proton conductivity of less than 1 × 10(-10) S cm(-1). The conduction-network correlation of LaCo(ox)2.5·4H2O is reported.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA