RESUMEN
Multilocus sequence analysis based on hypervariable housekeeping proteins was utilized to differentiate closely related species in the family Enterobacteriaceae. Of 150 housekeeping proteins, the top 10 hypervariable proteins were selected and concatenated to obtain distance data. Distances between concatenated proteins within the family were 0.9-41.2%, whereas the 16S rRNA and atpD-gyrB-infB-rpoB concatenated sequence (4MLSA) distances were 0.8-6.0% and 0.9-22.1%, respectively. These data indicate that phylogenetic analysis by concatenation of hypervariable proteins is a powerful tool for discriminating species in the family Enterobacteriaceae. To confirm the discriminatory power of the 10 chosen concatenated hypervariable proteins (C10HKP), phylogenetic trees based on C10HKP, 4MLSA, and the 16S rRNA gene were constructed. Comparison of average bootstrap values among C10HKP, 4MLSA and 16S rRNA genes indicated that the C10HKP tree was the most reliable. Location via the C10HKP tree was consistent with existing assignments for almost all species in the family Enterobacteriaceae. However, the C10HKP tree suggested that several species (including Enterobacter massiliensis, Escherichia vulneris, Escherichia hermannii, and Salmonella subterranea) should be reassigned to different clusters than those defined in previous analyses. Furthermore, E. hermannii and S. subterranea appeared to fall onto a branch independent from those occupied by the other Enterobacteriaceae. Therefore, we propose Atlantibacter gen. nov., such that E. hermannii and S. subterranea would be transferred to genus Atlantibacter as Atlantibacter hermannii, comb. nov. and Atlantibacter subterranea. comb. nov., respectively.
Asunto(s)
Enterobacteriaceae/clasificación , Enterobacteriaceae/genética , Tipificación de Secuencias Multilocus , Filogenia , Proteínas Bacterianas/genética , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Genes Esenciales , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
The conjugative transfer ranges of three different plasmids of the incompatibility groups IncP-1 (pBP136), IncP-7 (pCAR1), and IncP-9 (NAH7) were investigated in soil bacterial communities by culture-dependent and culture-independent methods. Pseudomonas putida, a donor of each plasmid, was mated with soil bacteria, and green fluorescent protein (GFP), encoded on the plasmid, was used as a reporter protein for successful transfer. GFP-expressing transconjugants were detected and separated at the single-cell level by flow cytometry. Each cell was then analyzed by PCR and sequencing of its 16S rRNA gene following either whole-genome amplification or cultivation. A large number of bacteria within the phylum Proteobacteria was identified as transconjugants for pBP136 by both culture-dependent and culture-independent methods. Transconjugants belonging to the phyla Actinobacteria, Bacteroidetes, and Firmicutes were detected only by the culture-independent method. Members of the genus Pseudomonas (class Gammaproteobacteria) were identified as major transconjugants of pCAR1 and NAH7 by both methods, whereas Delftia species (class Betaproteobacteria) were detected only by the culture-independent method. The transconjugants represented a minority of the soil bacteria. Although pCAR1-containing Delftia strains could not be cultivated after a one-to-one filter mating assay between the donor and cultivable Delftia strains as recipients, fluorescence in situ hybridization detected pCAR1-containing Delftia cells, suggesting that Delftia was a "transient" host of pCAR1.
Asunto(s)
Bacterias/clasificación , Bacterias/genética , Conjugación Genética , Transferencia de Gen Horizontal , Plásmidos , Microbiología del Suelo , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Citometría de Flujo , Genes Reporteros , Proteínas Fluorescentes Verdes/análisis , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Análisis de la Célula IndividualRESUMEN
Two thermophilic, strictly anaerobic, Gram-negative bacteria, designated strains AZM34c06(T) and AZM44c09(T), were isolated from terrestrial hot springs in Japan. The optimum growth conditions for strain AZM34c06(T) were 60 °C, pH 7.4 and 0% additional NaCl, and those for strain AZM44c09(T) were 70 °C, pH 7.4 and 0% additional NaCl. Complete genome sequencing was performed for both strains, revealing genome sizes of 2.19 Mbp (AZM34c06(T)) and 2.01 Mbp (AZM44c09(T)). Phylogenetic analyses based on 16S rRNA gene sequences and the concatenated predicted amino acid sequences of 33 ribosomal proteins showed that both strains belonged to the genus Thermotoga. The closest relatives of strains AZM34c06(T) and AZM44c09(T) were the type strains of Thermotoga lettingae (96.0% similarity based on the 16S rRNA gene and 84.1% similarity based on ribosomal proteins) and Thermotoga hypogea (98.6 and 92.7% similarity), respectively. Using blast, the average nucleotide identity was 70.4-70.5% when comparing strain AZM34c06(T) and T. lettingae TMO(T) and 76.6% when comparing strain AZM44c09(T) and T. hypogea NBRC 106472(T). Both values are far below the 95% threshold value for species delineation. In view of these data, we propose the inclusion of the two isolates in the genus Thermotoga within two novel species, Thermotoga profunda sp. nov. (type strain AZM34c06(T)â=âNBRC 106115(T)â=âDSM 23275(T)) and Thermotoga caldifontis sp. nov. (type strain AZM44c09(T)â=âNBRC 106116(T)â=âDSM 23272(T)).
Asunto(s)
Bacilos Gramnegativos Anaerobios Rectos, Curvos y Espirales/clasificación , Manantiales de Aguas Termales/microbiología , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Bacilos Gramnegativos Anaerobios Rectos, Curvos y Espirales/genética , Bacilos Gramnegativos Anaerobios Rectos, Curvos y Espirales/aislamiento & purificación , Japón , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
An aerobic bacterium, designated strain 5N-3 (NBRC 113055), that degrades cis-dichloroethene (cDCE) was isolated from a sea sediment in Japan. Strain 5N-3 was able to degrade a certain amount of cDCE in the presence of pyruvate without the action of inducers. In the presence of inducers, such as phenol and benzene, the strain completely removed cDCE. By the application of 16S ribosomal RNA (16S rRNA) gene sequencing and average nucleotide identity analyses, the strain 5N-3 was identified as Marinobacter salsuginis. On the other hand, identified species of Marinobacter are not known to degrade cDCE at all. A draft genome sequence analysis of the strain 5N-3 suggested that the dmp-homologous operon (operon for phenol degradation) may be contributing to the aerobic degradation of cDCE. This is the first report on an aerobic marine bacterium that has been found to degrade cDCE.
Asunto(s)
Dicloroetilenos/metabolismo , Marinobacter/clasificación , Marinobacter/metabolismo , Aerobiosis , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Técnicas de Tipificación Bacteriana , Biodegradación Ambiental , ADN Bacteriano/genética , Microbiología Industrial , Marinobacter/aislamiento & purificación , Operón , Fenol/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADNRESUMEN
Nonalcoholic fatty liver disease (NAFLD) is now the most common liver disease in the world. NAFLD can progress to nonalcoholic steatohepatitis (NASH), cirrhosis and eventually hepatocellular carcinoma. Acquired hepatic iron overload is seen in a number of patients with NAFLD; however, its significance in the pathology of NAFLD is still debated. Here, we investigated the role of dietary iron supplementation in experimental steatohepatitis in rats. Rats were fed a control, high-fat (HF), high-fat high-iron (HFHI) and high-iron (HI) diet for 30 weeks. Blood biochemical, histopathological and gut microbiota analyses were performed. Rats in HF and HFHI groups showed an ALT-dominant elevation of serum transaminases, hepatic steatosis, hepatic inflammation, and upregulation of proinflammatory cytokines. The number of large inflammatory foci, corresponding to lobular inflammation in NASH patients, was significantly higher in HFHI than in HF group; within the lesion, macrophages with intense iron staining were observed. Hepatic expression of TNFα was higher in HFHI than that in HF group. There was no significant change in hepatic oxidative stress, gut microbiota or serum endotoxin levels between HF and HFHI groups. These results suggested that dietary iron supplementation enhances experimental steatohepatitis induced by long-term high-fat diet feeding in rats. Iron-laden macrophages can play an important role in the enhancement of hepatic inflammation.
Asunto(s)
Suplementos Dietéticos , Inflamación/tratamiento farmacológico , Hierro/farmacología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Animales , Antioxidantes/metabolismo , Dieta Alta en Grasa , Microbioma Gastrointestinal/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/patología , Hierro/administración & dosificación , Hígado/patología , Masculino , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/patología , Estrés Oxidativo , Ratas , Sustancias Reactivas al Ácido TiobarbitúricoRESUMEN
Type strains of 72 validated Nocardia species were phylogenetically analyzed based on the multilocus sequence analysis (MLSA) concatenated atpD-groL1-groL2-recA-rpoA-secY-sodA-ychF. Furthermore, their similarity based on digital DNA-DNA hybridization (dDDH) was calculated. Nocardia soli, Nocardia cummidelens and Nocardia salmonicida, Nocardia nova and Nocardia elegans, Nocardia exalbida and Nocardia gamkensis, and Nocardia coubleae and Nocardia ignorata formed coherent clades, respectively. Moreover, each set showed over 70% relatedness by dDDH and shared common phenotypic characteristics. Therefore, we propose a reclassification of Nocardia soli and Nocardia cummidelens as a later heterotypic synonym of Nocardia salmonicida, Nocardia elegans as a later heterotypic synonym of Nocardia nova, Nocardia gamkensis as a later heterotypic synonym of Nocardia exalbida, and Nocardia coubleae as a later heterotypic synonym of Nocardia ignorata.
Asunto(s)
Nocardia/clasificación , Nocardia/genética , Técnicas de Tipificación Bacteriana , ADN Bacteriano/análisis , ADN Bacteriano/genética , Genoma Bacteriano/genética , Genotipo , Tipificación de Secuencias Multilocus , Fenotipo , Filogenia , Secuenciación Completa del GenomaRESUMEN
Pseudomonas putida is well-known for degradation activities for a variety of compounds and its infections have been reported. Thus, P. putida includes both clinical and nonclinical isolates. To date, no reports have examined the phylogenetic relationship between clinical and nonclinical isolates of the P. putida group. In this study, fifty-nine strains of P. putida group containing twenty-six clinical, and thirty-three nonclinical, isolates, were subjected to phylogenetic and taxonomic analyses based on 16S rRNA gene sequences and nine housekeeping gene sequences, including argS, dnaN, dnaQ, era, gltA, gyrB, ppnK, rpoB, and rpoD, to obtain insights into the diversity of species in this group. More than 97.6% similarity was observed among the 16S rRNA gene sequences of all the strains examined, indicating that the resolution of 16S rRNA gene sequences is inadequate. Phylogenetic analysis based on the individual housekeeping genes listed above improved the resolution of the phylogenetic trees, which are different from each other. Multilocus sequence analysis (MLSA) based on the concatenated sequences of the nine genes significantly improved the resolution of the phylogenetic tree, and yielded approximately the same results as average nucleotide identity (ANI) analysis, suggesting its high reliability. ANI analysis classified the fifty-nine strains into twenty-six species containing seventeen singletons and nine strain clusters based on the 95% threshold. It also indicated the mixed distribution of clinical and nonclinical isolates in the six clusters, suggesting that the genomic difference between clinical and nonclinical isolates of the P. putida group is subtle. The P. putida type strain NBRC 14164T is a singleton that is independently located from the P. putida strains distributed among the six clusters, suggesting that the classification of these strains and the differentiation of species in the P. putida group should be re-examined. This study greatly expands insights into the phylogenetic diversity of the P. putida group.
Asunto(s)
Variación Genética , Filogenia , Pseudomonas putida/clasificación , Pseudomonas putida/genética , Análisis por Conglomerados , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Microbiología Ambiental , Genes Esenciales , Genotipo , Tipificación de Secuencias Multilocus , Infecciones por Pseudomonas/microbiología , Pseudomonas putida/aislamiento & purificación , ARN Ribosómico 16S/genéticaRESUMEN
Bacteria capable of degrading cis-dichloroethene (cDCE) were screened from cDCE-contaminated soil, and YKD221, a bacterial strain that exhibited a higher growth on minimal salt agar plates in the presence of cDCE than in the absence of cDCE, were isolated. Phylogenetic studies of the 16S rRNA as well as gyrB, rpoD, and recA in YKD221 indicated that this strain is closely related to the type strains of Pseudomonas plecoglossicida, monteilii, and putida. An average nucleotide identity analysis indicated that YKD221 is most closely related to P. putida strains, including the type strain, which suggests that YKD221 belongs to P. putida. Although the genome of YKD221 was very similar to that of P. putida F1, a toluene-degrading strain, the YKD221 genome has 15 single-nucleotide polymorphisms and 4 insertions compared with the F1 genome. YKD221 caused the release of sufficient chloride ions from cDCE to suggest that the strain is able to completely dechlorinate and degrade cDCE. YKD221 also degraded trichloroethene but was unable to degrade trans-dichloroethene and tetrachloroethene. The degradation activity of YKD221 was elevated after growth on toluene. Inactivation of todC1, which encodes for a large subunit of the catalytic terminal component in toluene dioxygenase, resulted in a complete loss of growth on toluene and cDCE degradation activity. This is the first evidence of the involvement of todC1C2BA-coded toluene dioxygenase in cDCE degradation. YKD221 did not appear to grow on cDCE in a minimal salt liquid medium. However, YKD221 did exhibit an enhanced increase in cell concentration and volume of cells during growth on minimal salt agar plates with cDCE when first grown in LB medium. This behavior appears to have led us to misinterpret our initial results on YKD221 as an indication of improved growth in the presence of cDCE.
Asunto(s)
Bacterias/aislamiento & purificación , Bacterias/metabolismo , Dicloruros de Etileno/metabolismo , Microbiología del Suelo , Tolueno/metabolismo , Aerobiosis , Bacterias/clasificación , Bacterias/genética , Biodegradación Ambiental , Medios de Cultivo/química , Girasa de ADN/genética , Dioxigenasas/genética , Genes Bacterianos , Filogenia , Polimorfismo Genético , Pseudomonas/clasificación , Pseudomonas/genética , Pseudomonas/metabolismo , ARN Ribosómico 16S , Rec A Recombinasas/genéticaRESUMEN
Dehalococcoides spp. are currently the only organisms known to completely reduce cis-1,2-dichloroethene (cis-DCE) and vinyl chloride (VC) to non-toxic ethene. However, the activation of fermenting bacteria that generate acetate, hydrogen, and CO2 is considered necessary to enhance the dechlorination activity of Dehalococcoides and enable the complete dechlorination of chloroethenes. In the present study, we stimulated chloroethene-contaminated groundwater by injecting different nutrients prepared from yeast extract or polylactate ester using a semicontinuous culture system. We then evaluated changes in the bacterial community structure and their relationship with dechlorination activity during the biostimulation. The populations of Dehalococcoides and the phyla Bacteroidetes, Firmicutes, and Spirochaetes increased in the yeast extract-amended cultures and chloroethenes were completely dechlorinated. However, the phylum Proteobacteria was dominant in polylactate ester-amended cultures, in which almost no cis-DCE and VC were dechlorinated. These results provide fundamental information regarding possible interactions among bacterial community members involved in the dechlorination process and support the design of successful biostimulation strategies.
Asunto(s)
Bacterias/crecimiento & desarrollo , Cloro/metabolismo , Agua Subterránea/química , Agua Subterránea/microbiología , Hidrocarburos Clorados/metabolismo , Consorcios Microbianos , Contaminantes Químicos del Agua/metabolismo , Bacterias/metabolismo , Medios de Cultivo/química , Etilenos/metabolismoRESUMEN
A novel Dehalococcoides sp. strain UCH007 was isolated from the groundwater polluted with chlorinated ethenes in Japan. This strain is capable of dechlorinating trichloroethene, cis-1,2-dichloroethene and vinyl chloride to ethene. Dehalococcoides bacteria are hardly cultivable, so genome sequencing has presented a challenge. In this study, we developed a differential reads picking method for mixed genomic DNA obtained from a co-culture, and applied it to the sequencing of strain UCH007. The genome of strain UCH007 consists of a 1,473,548-bp chromosome that encodes 1509 coding sequences including 29 putative reductive dehalogenase genes. Strain UCH007 is the first strain in the Victoria subgroup found to possess the pceA, tceA and vcrA genes.
RESUMEN
Sulfurospirillum strains UCH001 and UCH003 were isolated from anaerobic cis-1,2-dichloroethene-dechlorinating microbial consortia derived from groundwater in Japan. Here, we report the complete genome sequences of strains UCH001 and UCH003.
RESUMEN
Pseudomonas putida has attracted much interest for its environmental, industrial, biotechnological, and clinical importance. Here, we report the complete genome sequence of the type strain P. putida NBRC 14164. This genome sequence will assist to further elucidate the molecular mechanisms of the characteristic traits among strains belonging to the species P. putida.
RESUMEN
Comamonas testosteroni TK102 (NBRC 109938; JCM 19603) can utilize biphenyl as a sole carbon source and degrade polychlorinated biphenyls (PCBs). The complete nucleotide sequence of the TK102 genome was determined. TK102 possesses several integrative and conjugative element-like regions, and one of them carries biphenyl-degradative genes.
RESUMEN
Alcanivorax sp. strain NBRC 101098 was isolated from seawater in Japan. Strain NBRC 101098 is able to degrade various types of n-alkanes. Here, we report the complete genome of strain NBRC 101098.
RESUMEN
Acinetobacter guillouiae strain 20B can utilize dimethyl sulfide (DMS) as the sole sulfur source and degrade chloroethylenes. We report here the complete 4,648,418-bp genome sequence for this strain, which contains 4,367 predicted coding sequences (CDSs), including a well-characterized DMS degradative operon.
RESUMEN
Geobacillus sp. strain JF8 (NBRC 109937) utilizes biphenyl and naphthalene as sole carbon sources and degrades polychlorinated biphenyl (PCB) at 60°C. Here, we report the complete nucleotide sequence of the JF8 genome (a 3,446,630-bp chromosome and a 39,678-bp plasmid). JF8 has the smallest genome among the known PCB degraders.
RESUMEN
Pseudomonas resinovorans strain CA10 can grow on carbazole as its sole carbon and nitrogen source. Here, we report the complete nucleotide sequence of the CA10 genome (a 6,285,863-bp chromosome and a 198,965-bp plasmid). CA10 carries a larger number of genes that are potentially responsible for aromatic hydrocarbon metabolism than do other previously sequenced Pseudomonas spp.