Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Chem Phys ; 157(15): 154702, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36272797

RESUMEN

The interfacial behavior of tetrabutylammonium bromide (TBAB) aqueous solutions in the absence of gas and the presence of methane and carbon dioxide gases is studied by molecular dynamics simulations. The aqueous TBAB phase, at concentrations similar to the solid semiclathrate hydrate (1:38 mol ratio), has a smaller interfacial tension and an increase in the gas molecules adsorbed at the interface compared to that in pure water. Both these factors may contribute to facilitating the uptake of the gases into the solid phase during the process of semiclathrate hydrate formation. At similar gas pressures, CO2 is adsorbed preferentially compared to CH4, giving it a higher surface density, due to the stronger intermolecular interactions of CO2 molecules of the solution at the interface. The increase in relative adsorption of CH4 at the solution surface compared to that in pure water surface is due to the hydrophobic interactions between the n-alkyl chains of the TBA+ cation and methane gas.

2.
Phys Chem Chem Phys ; 22(47): 27658-27665, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33236750

RESUMEN

In this study, X-ray imaging of inclusion compounds encapsulating various guest species was investigated based on the calculation of X-ray attenuation coefficients. The optimal photon energies of clathrate hydrates were simulated for high-contrast X-ray imaging based on the type of guest species. The proof of concept was provided by observations of Kr hydrate and tetra-n-butylammonium bromide (TBAB) semi-clathrate hydrate using absorption-contrast X-ray computed tomography (CT) and radiography with monochromated synchrotron X-rays. The radiographic image of the Kr hydrate also revealed a sudden change in its attenuation coefficient owing to the K-absorption edge of Kr as the guest element. With a photon energy of 35 keV, X-ray CT provided sufficient segmentation for the TBAB semi-clathrate hydrate coexisting with ice. In contrast, the simulation did not achieve the sufficient segmentation of the CH4 and CO2 hydrates coexisting with water or ice, but it revealed the capability of absorption-contrast X-ray CT to model the physical properties of clathrate hydrates, such as Ar and Cl2 hydrates. These results demonstrate that the proposed method can be used to investigate the spatial distribution of specific elements within inclusion compounds or porous materials.

3.
J Chem Phys ; 153(4): 044701, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32752701

RESUMEN

Molecular dynamics simulations were performed to study the interfacial behavior of the pure carbon dioxide-water system and a binary 40:60 mol. % gas mixture of (carbon dioxide + methane)-water at the temperatures of 275.15 K and 298.15 K and pressures near 4 MPa for CO2 and up to 10 MPa for methane. The simulations are used to study the dynamic equilibrium of the gases at the water-gas interface, to determine the z-density profiles for the gases and water, and calculate the interfacial tension γ under the different temperature/pressure conditions close to those of the formation of clathrate hydrates of these gases. At the same hydrostatic gas phase pressure, the CO2-water interface has a lower interfacial tension than the CH4-water interface. A greater number of CO2 molecules, as much as three times more than methane at the same pressure, were adsorbed at the interfacial layer, which reflects the stronger electrostatic quadrupolar and van der Waals interactions between CO2 and water molecules at the interface. The water surfaces are covered by less than a monolayer of gas even when the pressure of the system goes near the saturation pressure of CO2. The surface adsorbed molecules are in dynamic equilibrium with the bulk gas and with exchange between the gas and interface regions occurring repeatedly within the timescale of the simulations. The effects of the changes in the CO2-water interfacial tension with external temperature and pressure conditions on the formation of the clathrate hydrates and other CO2 capture and sequestration processes are discussed.

4.
J Chem Phys ; 150(11): 114703, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901995

RESUMEN

The presence of small hydrocarbons is known to reduce the interfacial tension of the gas-water interface, and this phenomenon can affect the formation of the clathrate hydrates of these gases. In this work, the interfacial behavior of the pure methane-, ethane-, and propane-water, and the ternary 90:7:3 mol. % gas mixture of (methane + ethane + propane)-water were studied with molecular dynamics simulations. The interfacial tension, γ, and z-density profiles for the gases and water from simulations of the gas-water systems were determined at the temperatures of 275.15 and 298.15 K, and pressures up to 10 MPa for methane and up to near the experimental saturation pressures of ethane and propane. The goal is to accurately calculate the interfacial tension for the hydrocarbon/water systems and to analyze the molecular behaviors at the interfaces which lead to the observed trends. At the same hydrostatic gas phase pressure, propane, ethane, and methane reduce the gas-water interfacial tension in that order. The local density of the gas molecules at the interface is enhanced relative to the bulk gas, and it was determined that about 13%-20%, 33%-40%, and 54%-59% of the gas molecules in the simulation congregated at the interfaces for the CH4-, C2H6-, and C3H8-water systems, respectively, at the different simulated hydrostatic pressure ranges. For all gases in the pressure range studied, a complete monolayer of gas had not formed at the water interface. Furthermore, a dynamic equilibrium with fast exchange between molecules at the interface and in the gas phase was observed. For the gas mixture, deviations were observed between total calculated interfacial tension, γmix, and the "ideal mixture" value, ∑xiγi,pure, calculated from the interfacial tensions of the pure gases, where xi is the mole fraction of each substance in the simulation. Some possible implications of the results on the mechanism of clathrate hydrate formation are discussed.

5.
Chemistry ; 22(22): 7567-73, 2016 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-27105807

RESUMEN

Water versus fluorine: Clathrate hydrates encaging hydrofluorocarbons as guests show both isotropic and anisotropic distributions within host water cages, depending on the number of fluorine atoms in the guest molecule; this is caused by changes in intermolecular interactions to host water molecules in the hydrates.

6.
J Chem Phys ; 145(15): 154708, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27782458

RESUMEN

When compressed with water or ice under high pressure and low temperature conditions, some gases form solid gas hydrate inclusion compounds which have higher melting points than ice under those pressures. In this work, we study the balance of the guest-water and water-water interaction energies that lead to the formation of the clathrate hydrate phases. In particular, molecular dynamics simulations with accurate water potentials are used to study the energetics of the formation of structure I (sI) and II (sII) clathrate hydrates of methane, ethane, and propane. The dissociation enthalpy of the clathrate hydrate phases, the encapsulation enthalpy of methane, ethane, and propane guests in the corresponding phases, and the average bonding enthalpy of water molecules are calculated and compared with accurate calorimetric measurements and previous classical and quantum mechanical calculations, when available. The encapsulation energies of methane, ethane, and propane guests stabilize the small and large sI and sII hydrate cages, with the larger molecules giving larger encapsulation energies. The average water-water interactions are weakened in the sI and sII phases compared to ice. The relative magnitudes of the van der Waals potential energy in ice and the hydrate phases are similar, but in the ice phase, the electrostatic interactions are stronger. The stabilizing guest-water "hydrophobic" interactions compensate for the weaker water-water interactions and stabilize the hydrate phases. A number of common assumptions regarding the guest-cage water interactions are used in the van der Waals-Platteeuw statistical mechanical theory to predict the clathrate hydrate phase stability under different pressure-temperature conditions. The present calculations show that some of these assumptions may not accurately reflect the physical nature of the interactions between guest molecules and the lattice waters.

7.
Angew Chem Int Ed Engl ; 55(32): 9287-91, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27346760

RESUMEN

The crystal structure and phase transition of cubic structure II (sII) binary clathrate hydrates of methane (CH4 ) and propanol are reported from powder X-ray diffraction measurements. The deformation of host water cages at the cubic-tetragonal phase transition of 2-propanol+CH4 hydrate, but not 1-propanol+CH4 hydrate, was observed below about 110 K. It is shown that the deformation of the host water cages of 2-propanol+CH4 hydrate can be explained by the restriction of the motion of 2-propanol within the 5(12) 6(4) host water cages. This result provides a low-temperature structure due to a temperature-induced symmetry-lowering transition of clathrate hydrate. This is the first example of a cubic structure of the common clathrate hydrate families at a fixed composition.

8.
Phys Chem Chem Phys ; 17(19): 12639-47, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25905113

RESUMEN

Clathrate hydrates are typically stabilized by suitably sized hydrophobic guest molecules. However, it has been experimentally reported that isomers of amyl-alcohol C5H11OH can be enclosed into the 5(12)6(4) cages in structure II (sII) clathrate hydrates, even though the effective radii of the molecules are larger than the van der Waals radii of the cages. To reveal the mechanism of the anomalous enclathration of hydrophilic molecules, we performed ab initio and classical molecular dynamics simulations (MD) and analyzed the structure and dynamics of a guest-host hydrogen bond for sII 3-methyl-1-butanol and structure H (sH) 2-methyl-2-butanol clathrate hydrates. The simulations clearly showed the formation of guest-host hydrogen bonds and the incorporation of the O-H group of 3-methyl-1-butanol guest molecules into the framework of the sII 5(12)6(4) cages, with the remaining hydrophobic part of the amyl-alcohol molecule well accommodated into the cages. The calculated vibrational spectra of alcohol O-H bonds showed large frequency shifts due to the strong guest-host hydrogen bonding. The 2-methyl-2-butanol guests form strong hydrogen bonds with the cage water molecules in the sH clathrate, but are not incorporated into the water framework. By comparing the structures of the alcohols in the hydrate phases, the effect of the location of O-H groups in the butyl chain of the guest molecules on the crystalline structure of the clathrate hydrates is indicated.

9.
J Chem Phys ; 138(12): 124504, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23556733

RESUMEN

Position and orientation of water protons need to be specified when the molecular simulation studies are performed for clathrate hydrates. Positions of oxygen atoms in water are experimentally determined by X-ray diffraction analysis of clathrate hydrate structures, but positions of water hydrogen atoms in the lattice are disordered. This study reports a determination of the water proton coordinates in unit cell of structure I (sI), II (sII), and H (sH) clathrate hydrates that satisfy the ice rules, have the lowest potential energy configuration for the protons, and give a net zero dipole moment. Possible proton coordinates in the unit cell were chosen by analyzing the symmetry of protons on the hexagonal or pentagonal faces in the hydrate cages and generating all possible proton distributions which satisfy the ice rules. We found that in the sI and sII unit cells, proton distributions with small net dipole moments have fairly narrow potential energy spreads of about 1 kJ∕mol. The total Coulomb potential on a test unit charge placed in the cage center for the minimum energy∕minimum dipole unit cell configurations was calculated. In the sI small cages, the Coulomb potential energy spread in each class of cage is less than 0.1 kJ∕mol, while the potential energy spread increases to values up to 6 kJ∕mol in sH and 15 kJ∕mol in the sII cages. The guest environments inside the cages can therefore be substantially different in the sII case. Cartesian coordinates for oxygen and hydrogen atoms in the sI, sII, and sH unit cells are reported for reference.


Asunto(s)
Hidrógeno/química , Protones , Agua/química , Cristalografía por Rayos X , Modelos Moleculares , Simulación de Dinámica Molecular , Estructura Molecular
10.
J Phys Chem Lett ; 14(7): 1885-1891, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36780459

RESUMEN

We report a thermally induced phase transition of cubic structure II hydrates of tetrahydropyran (THP) and CO2 below about 140 K. The phase transition was characterized by powder X-ray diffraction measurements at variable temperatures. A dynamical ordering of the CO2 guests in small pentagonal dodecahedral 512 host water cages, not previously observed in the simple CO2 hydrate, occurs simultaneously with the symmetry lowering transition from a cubic structure II (space group Fd-3m with cell dimensions a = 17.3202(7) Å at 153 K) to a tetragonal (space group I41/amd with cell dimensions a = 17.484(4) Å and c = 12.145(1) Å at 138 K) unit cell. The effect of guest molecules on the phase transition at low temperatures is discussed, which demonstrates that the clathrate hydrate structures and thermodynamic properties can be modified by adjusting the size and chemical structure of larger and smaller guest molecules.

11.
Plants (Basel) ; 12(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37176965

RESUMEN

The storage roots of purple-fleshed sweet potato contain a variety of anthocyanins and polyphenols. Little is known about changes in the total content and composition of anthocyanins and polyphenols in the early growth stages of the root system. In this study, we investigated the changes in anthocyanins and polyphenols in the root system of purple-fleshed sweet potato cultivars at 15, 30, 45, and 60 days after transplant (DAT). Unexpectedly, the highest percentage of acylated anthocyanins in three purple-fleshed cultivars among all growth stages was at 15 DAT. On the other hand, the total polyphenol content in the early growth stages of the root system increased rapidly toward 45 DAT, just before the beginning of storage root enlargement, and then decreased rapidly as the storage roots began to enlarge. These data indicate that the early growth stage of the root system is a critical time. This timing may present a strategy to maximize the accumulation of polyphenols with high antioxidant activity, as well as acylated anthocyanins, to protect against abiotic and biotic stresses.

12.
J Synchrotron Radiat ; 19(Pt 6): 1038-42, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23093767

RESUMEN

Diffraction-enhanced imaging (DEI) is a phase-contrast X-ray imaging technique suitable for visualizing light-element materials. The method also enables observations of sample-containing regions with large density gradients. In this study a cryogenic imaging technique was developed for DEI-enabled measurements at low temperature from 193 K up to room temperature with a deviation of 1 K. Structure-II air hydrate and structure-I carbon dioxide (CO(2)) hydrate were examined to assess the performance of this cryogenic DEI technique. It was shown that this DEI technique could image gas hydrate coexisting with ice and gas bubbles with a density resolution of about 0.01 g cm(-3) and a wide dynamic density range of about 1.60 g cm(-3). In addition, this method may be a way to make temperature-dependent measurements of physical properties such as density.

13.
J Chem Phys ; 137(14): 144306, 2012 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-23061847

RESUMEN

Vibrational spectra of guest molecules in clathrate hydrates are frequently measured to determine the characteristic signatures of the molecular environment and dynamical properties of guest-host interactions. Here, we present results of our study on the vibrational frequencies of methane molecules in structure H clathrate hydrates, namely, in the 5(12) and 4(3)5(6)6(3) cages, as the frequencies of stretching vibrational modes in these environments are still unclear. The vibrational spectra of methane molecules in structure H clathrate hydrate were obtained from ab initio molecular dynamics simulation and computed from Fourier transform of autocorrelation functions for each distinct vibrational mode. The calculated symmetric and asymmetric stretching vibrational frequencies of methane molecules were found to be lower in the 4(3)5(6)6(3) cages than in the 5(12) cages (3.8 cm(-1) for symmetric stretching and 6.0 cm(-1) for asymmetric stretching). The C-H bond length and average distance between methane molecules and host-water molecules in 4(3)5(6)6(3) cages were slightly longer than those in the 5(12) cages.

14.
J Chem Phys ; 136(4): 044508, 2012 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-22299892

RESUMEN

Vibrational frequencies of guest molecules in clathrate hydrates reflect the molecular environment and dynamical behavior of molecules. A detailed understanding of the mechanism for the vibrational frequency changes of the guest molecules in the clathrate hydrate cages is still incomplete. In this study, molecular vibrations of methane molecules in a structure I clathrate hydrate are calculated from ab initio molecular dynamics simulation. The vibrational spectra of methane are computed by Fourier transform of autocorrelation functions, which reveal distinct separation of each vibrational mode. Calculated symmetric and asymmetric stretching vibrational frequencies of methane molecules are lower in the large cages than in the small cages (8 and 16 cm(-1) for symmetric and asymmetric stretching, respectively). These changes are closely linked with the C-H bond length. The vibrational frequencies for the bending and rocking vibrational modes nearly overlap in each of the cages.

15.
Food Chem ; 371: 131369, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34808771

RESUMEN

CO2 hydrate is applicable to solid carbonated foods. The hydrate crystal morphology, which represents the crystal size and shape, is an important characteristic that changes the texture of foods. We report an observational study of the crystal growth of CO2 hydrate in aqueous fructose solution. The difference between the phase equilibrium temperature and the experimental temperature, ΔTsub, is applied as an index of the driving force. Experiments were performed at ΔTsub range of 0.9 K to 5.4 K. At all ΔTsub, initial crystal formed at the gas-solution interface and grew along the interface. After covering the interface, the crystals grew in the liquid phase The individual crystals were identified as polyhedral with facets (ΔTsub = 0.9 K), skeletal crystals (ΔTsub = 2.0 K) and dendrites (ΔTsub = 3.0 K and 5.4 K). Based on these results, the potential effect of gas hydrate morphology on texture of foods has been discussed.


Asunto(s)
Dióxido de Carbono , Fructosa , Cristalización , Temperatura , Agua
16.
Chemistry ; 17(34): 9471-7, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21735490

RESUMEN

This paper reports the visual observations of the formation and growth of structure-II hydrate crystals on a water droplet partially immersed in liquid cyclopentane and exposed to difluoromethane gas. Each of the experiments was performed under prescribed temperature and pressure conditions in the range from 281.7 to 297.0 K and from 0.12 to 1.10 MPa in order to investigate the effect of the driving force for the hydrate crystal growth. The experiments were conducted at 25 different temperature-pressure conditions. It was found that the behavior of the hydrate crystal growth in this three-component system can be classified into three modes, which we called "cover", "expansion" and "line", depending on the temperature and pressure. The descriptions of the three types are summarized as follows. "COVER": Hydrate crystals first formed on the water-droplet surface and then grew to form a polycrystalline layer covering the surface. After complete surface coverage, no more hydrate growth and little change in the shape of the hydrate-covered water droplet were observed. "EXPANSION": Like "cover", the first crystals were observed on the water-droplet surface. They grew not only along the surface, but also toward the gas phase, and then continued to grow for more than several tens of minutes after complete coverage. "LINE": Unlike the other two modes, hydrate crystals first formed at the three-phase interfacial line and grew along this line. The shape of the hydrate crystals eventually became like a doughnut, since the center of the water droplet collapsed when they grew.

17.
J Phys Chem A ; 115(9): 1650-7, 2011 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-21329330

RESUMEN

(13)C NMR chemical shifts were measured for pure (neat) liquids and synthetic binary hydrate samples (with methane help gas) for 2-methylbutane, 2,2-dimethylbutane, 2,3-dimethylbutane, 2-methylpentane, 3-methylpentane, methylcyclopentane, and methylcyclohexane and ternary structure H (sH) clathrate hydrates of n-pentane and n-hexane with methane and 2,2-dimethylbutane, all of which form sH hydrates. The (13)C chemical shifts of the guest atoms in the hydrate are different from those in the free form, with some carbon atoms shifting specifically upfield. Such changes can be attributed to conformational changes upon fitting the large guest molecules in hydrate cages and/or interactions between the guests and the water molecules of the hydrate cages. In addition, powder X-ray diffraction measurements revealed that for the hexagonal unit cell, the lattice parameter along the a-axis changes with guest hydrate former molecule size and shape (in the range of 0.1 Å) but a much smaller change in the c-axis (in the range of 0.01 Å) is observed. The (13)C NMR chemical shifts for the pure hydrocarbons and all conformers were calculated using the gauge invariant atomic orbital method at the MP2/6-311+G(2d,p) level of theory to quantify the variation of the chemical shifts with the dihedral angles of the guest molecules. Calculated and measured chemical shifts are compared to determine the relative contribution of changes in the conformation and guest-water interactions to the change in chemical shift of the guest upon clathrate hydrate formation. Understanding factors that affect experimental chemical shifts for the enclathrated hydrocarbons will help in assigning spectra for complex hydrates recovered from natural sites.

18.
J Chem Phys ; 134(5): 054702, 2011 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-21303147

RESUMEN

Guest-host hydrogen bonding in clathrate hydrates occurs when in addition to the hydrophilic moiety which causes the molecule to form hydrates under high pressure-low temperature conditions, the guests contain a hydrophilic, hydrogen bonding functional group. In the presence of carbon dioxide, ethanol clathrate hydrate has been synthesized with 10% of large structure I (sI) cages occupied by ethanol. In this work, we use molecular dynamics simulations to study hydrogen bonding structure and dynamics in this binary sI clathrate hydrate in the temperature range of 100-250 K. We observe that ethanol forms long-lived (>500 ps) proton-donating and accepting hydrogen bonds with cage water molecules from both hexagonal and pentagonal faces of the large cages while maintaining the general cage integrity of the sI clathrate hydrate. The presence of the nondipolar CO(2) molecules stabilizes the hydrate phase, despite the strong and prevalent alcohol-water hydrogen bonding. The distortions of the large cages from the ideal form, the radial distribution functions of the guest-host interactions, and the ethanol guest dynamics are characterized in this study. In previous work through dielectric and NMR relaxation time studies, single crystal x-ray diffraction, and molecular dynamics simulations we have observed guest-water hydrogen bonding in structure II and structure H clathrate hydrates. The present work extends the observation of hydrogen bonding to structure I hydrates.

19.
J Chem Phys ; 134(14): 144702, 2011 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-21495767

RESUMEN

Molecular dynamics simulations have been performed to examine the thermodynamic properties of methane/water interface using two different water models, the TIP4P/2005 and SPC/E, and two sets of combining rules. The density profiles, interfacial tensions, surface excesses, surface pressures, and coexisting densities are calculated over a wide range of pressure conditions. The TIP4P/2005 water model was used, with an optimized combining rule between water and methane fit to the solubility, to provide good predictions of interfacial properties. The use of the infinite dilution approximation to calculate the surface excesses from the interfacial tensions is examined comparing the surface pressures obtained by different approaches. It is shown that both the change of methane solubilities in pressure and position of maximum methane density profile at the interface are independent of pressure up to about 2 MPa. We have also calculated the adsorption enthalpies and entropies to describe the temperature dependency of the adsorption.

20.
Sci Rep ; 11(1): 11315, 2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34059746

RESUMEN

Hydrate-based gas separation technology is applicable to the CO2 capture and storage from synthesis gas mixture generated through gasification of fuel sources including biomass. This paper reports visual observations of crystal growth dynamics and crystal morphology of hydrate formed in the H2 + CO2 + tetrahydropyran (THP) + water system with a target for developing the hydrate-based CO2 separation process design. Experiments were conducted at a temperature range of 279.5-284.9 K under the pressure of 4.9-5.3 MPa. To simulate the synthesis gas, gas composition in the gas phase was maintained around H2:CO2 = 0.6:0.4 in mole fraction. Hydrate crystals were formed and extended along the THP/water interface. After the complete coverage of the interface to shape a polycrystalline shell, hydrate crystals continued to grow further into the bulk of liquid water. The individual crystals were identified as hexagonal, tetragonal and other polygonal-shaped formations. The crystal growth rate and the crystal size varied depending on thermodynamic conditions. Implications from the obtained results for the arrangement of operating conditions at the hydrate formation-, transportation-, and dissociation processes are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA