Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Mol Cell ; 82(8): 1390-1397, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35452608

RESUMEN

We asked experts from different fields-from genome maintenance and proteostasis to organelle degradation via ubiquitin and autophagy-"What does quality control mean to you?" Despite their diverse backgrounds, they converge on and discuss the importance of continuous quality control at all levels, context, communication, timing, decisions on whether to repair or remove, and the significance of dysregulated quality control in disease.


Asunto(s)
Autofagia , Ubiquitina , Proteostasis , Ubiquitina/genética , Ubiquitina/metabolismo
2.
Mol Cell ; 81(7): 1411-1424.e7, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33567268

RESUMEN

Targeted protein degradation is an emerging therapeutic paradigm. Small-molecule degraders such as proteolysis-targeting chimeras (PROTACs) induce the degradation of neo-substrates by hijacking E3 ubiquitin ligases. Although ubiquitylation of endogenous substrates has been extensively studied, the mechanism underlying forced degradation of neo-substrates is less well understood. We found that the ubiquitin ligase TRIP12 promotes PROTAC-induced and CRL2VHL-mediated degradation of BRD4 but is dispensable for the degradation of the endogenous CRL2VHL substrate HIF-1α. TRIP12 associates with BRD4 via CRL2VHL and specifically assembles K29-linked ubiquitin chains, facilitating the formation of K29/K48-branched ubiquitin chains and accelerating the assembly of K48 linkage by CRL2VHL. Consequently, TRIP12 promotes the PROTAC-induced apoptotic response. TRIP12 also supports the efficiency of other degraders that target CRABP2 or TRIM24 or recruit CRBN. These observations define TRIP12 and K29/K48-branched ubiquitin chains as accelerators of PROTAC-directed targeted protein degradation, revealing a cooperative mechanism of branched ubiquitin chain assembly unique to the degradation of neo-substrates.


Asunto(s)
Proteínas Portadoras/metabolismo , Poliubiquitina/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células HCT116 , Células HEK293 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Poliubiquitina/genética , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética
3.
Nature ; 578(7794): 296-300, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32025036

RESUMEN

The proteasome is a major proteolytic machine that regulates cellular proteostasis through selective degradation of ubiquitylated proteins1,2. A number of ubiquitin-related molecules have recently been found to be involved in the regulation of biomolecular condensates or membraneless organelles, which arise by liquid-liquid phase separation of specific biomolecules, including stress granules, nuclear speckles and autophagosomes3-8, but it remains unclear whether the proteasome also participates in such regulation. Here we reveal that proteasome-containing nuclear foci form under acute hyperosmotic stress. These foci are transient structures that contain ubiquitylated proteins, p97 (also known as valosin-containing protein (VCP)) and multiple proteasome-interacting proteins, which collectively constitute a proteolytic centre. The major substrates for degradation by these foci were ribosomal proteins that failed to properly assemble. Notably, the proteasome foci exhibited properties of liquid droplets. RAD23B, a substrate-shuttling factor for the proteasome, and ubiquitylated proteins were necessary for formation of proteasome foci. In mechanistic terms, a liquid-liquid phase separation was triggered by multivalent interactions of two ubiquitin-associated domains of RAD23B and ubiquitin chains consisting of four or more ubiquitin molecules. Collectively, our results suggest that ubiquitin-chain-dependent phase separation induces the formation of a nuclear proteolytic compartment that promotes proteasomal degradation.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Estrés Fisiológico , Ubiquitinación , Línea Celular , Núcleo Celular/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Presión Osmótica , Poliubiquitina/metabolismo , Proteolisis , Proteostasis , Proteínas Ribosómicas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteína que Contiene Valosina/metabolismo
4.
Nat Chem Biol ; 19(3): 311-322, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36316570

RESUMEN

Targeted protein degradation through chemical hijacking of E3 ubiquitin ligases is an emerging concept in precision medicine. The ubiquitin code is a critical determinant of the fate of substrates. Although two E3s, CRL2VHL and CRL4CRBN, frequently assemble with proteolysis-targeting chimeras (PROTACs) to attach lysine-48 (K48)-linked ubiquitin chains, the diversity of the ubiquitin code used for chemically induced degradation is largely unknown. Here we show that the efficacy of cIAP1-targeting degraders depends on the K63-specific E2 enzyme UBE2N. UBE2N promotes degradation of cIAP1 induced by cIAP1 ligands and subsequent cancer cell apoptosis. Mechanistically, UBE2N-catalyzed K63-linked ubiquitin chains facilitate assembly of highly complex K48/K63 and K11/K48 branched ubiquitin chains, thereby recruiting p97/VCP, UCH37 and the proteasome. Degradation of neo-substrates directed by cIAP1-recruiting PROTACs also depends on UBE2N. These results reveal an unexpected role for K63-linked ubiquitin chains and UBE2N in degrader-induced proteasomal degradation and demonstrate the diversity of the ubiquitin code used for chemical hijacking.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitina , Ubiquitina/metabolismo , Ubiquitinación , Ubiquitina-Proteína Ligasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis
5.
Mol Cell ; 66(4): 488-502.e7, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28525741

RESUMEN

Ubiquitin-binding domain (UBD) proteins regulate numerous cellular processes, but their specificities toward ubiquitin chain types in cells remain obscure. Here, we perform a quantitative proteomic analysis of ubiquitin linkage-type selectivity of 14 UBD proteins and the proteasome in yeast. We find that K48-linked chains are directed to proteasomal degradation through selectivity of the Cdc48 cofactor Npl4. Mutating Cdc48 results in decreased selectivity, and lacking Rad23/Dsk2 abolishes interactions between ubiquitylated substrates and the proteasome. Among them, only Npl4 has K48 chain specificity in vitro. Thus, the Cdc48 complex functions as a K48 linkage-specifying factor upstream of Rad23/Dsk2 for proteasomal degradation. On the other hand, K63 chains are utilized in endocytic pathways, whereas both K48 and K63 chains are found in the MVB and autophagic pathways. Collectively, our results provide an overall picture of the ubiquitin network via UBD proteins and identify the Cdc48-Rad23/Dsk2 axis as a major route to the proteasome.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Ubiquitina/metabolismo , Ubiquitinación , Ubiquitinas/metabolismo , Adenosina Trifosfatasas/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Endocitosis , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/genética , Inhibidores de Proteasoma/farmacología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo , Ubiquitinación/efectos de los fármacos , Ubiquitinas/genética , Proteína que Contiene Valosina
6.
Development ; 148(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34519339

RESUMEN

Notch-Delta signaling regulates many developmental processes, including tissue homeostasis and maintenance of stem cells. Upon interaction of juxtaposed cells via Notch and Delta proteins, intracellular domains of both transmembrane proteins are cleaved and translocate to the nucleus. Notch intracellular domain activates target gene expression; however, the role of the Delta intracellular domain remains elusive. Here, we show the biological function of Delta like 1 intracellular domain (D1ICD) by modulating its production. We find that the sustained production of D1ICD abrogates cell proliferation but enhances neurogenesis in the developing dorsal root ganglia (DRG), whereas inhibition of D1ICD production promotes cell proliferation and gliogenesis. D1ICD acts as an integral component of lateral inhibition mechanism by inhibiting Notch activity. In addition, D1ICD promotes neurogenesis in a Notch signaling-independent manner. We show that D1ICD binds to Erk1/2 in neural crest stem cells and inhibits the phosphorylation of Erk1/2. In summary, our results indicate that D1ICD regulates DRG development by modulating not only Notch signaling but also the MAP kinase pathway.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Sistema de Señalización de MAP Quinasas , Neurogénesis , Receptores Notch/metabolismo , Animales , Sitios de Unión , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/genética , Proliferación Celular , Células Cultivadas , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Células HEK293 , Humanos , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Células 3T3 NIH , Neuronas/citología , Neuronas/metabolismo , Neuronas/fisiología , Unión Proteica
7.
Mol Cell ; 64(2): 251-266, 2016 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-27746020

RESUMEN

Polyubiquitin chains of different topologies regulate diverse cellular processes. K48- and K63-linked chains, the two most abundant chain types, regulate proteolytic and signaling pathways, respectively. Although recent studies reported important roles for heterogeneous chains, the functions of branched ubiquitin chains remain unclear. Here, we show that the ubiquitin chain branched at K48 and K63 regulates nuclear factor κB (NF-κB) signaling. A mass-spectrometry-based quantification strategy revealed that K48-K63 branched ubiquitin linkages are abundant in cells. In response to interleukin-1ß, the E3 ubiquitin ligase HUWE1 generates K48 branches on K63 chains formed by TRAF6, yielding K48-K63 branched chains. The K48-K63 branched linkage permits recognition by TAB2 but protects K63 linkages from CYLD-mediated deubiquitylation, thereby amplifying NF-κB signals. These results reveal a previously unappreciated cooperation between K48 and K63 linkages that generates a unique coding signal: ubiquitin chain branching differentially controls readout of the ubiquitin code by specific reader and eraser proteins to activate NF-κB signaling.


Asunto(s)
Lisina/química , FN-kappa B/química , Poliubiquitina/química , Factor 6 Asociado a Receptor de TNF/química , Ubiquitina-Proteína Ligasas/química , Ubiquitina/química , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Línea Celular Tumoral , Enzima Desubiquitinante CYLD , Expresión Génica , Humanos , Interleucina-1beta/farmacología , Péptidos y Proteínas de Señalización Intracelular , Lisina/metabolismo , Modelos Moleculares , FN-kappa B/genética , FN-kappa B/metabolismo , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Poliubiquitina/genética , Poliubiquitina/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Transducción de Señal , Especificidad por Sustrato , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
8.
Bioconjug Chem ; 33(1): 142-151, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34878263

RESUMEN

Trivalent PROTACs having a functionalization site with controlled orientation were designed, synthesized, and evaluated. Based on the X-ray structure of BRD protein degrader MZ1 (1) in complex with human VHL and BRD4BD2, we expected that the 1,2-disubstituted ethyl group near the JQ-1 moiety in MZ1 (1) could be replaced by a planar benzene tether as a platform for further functionalization. To test this hypothesis, we first designed six divalent MZ1 derivatives, 2a-c and 3a-c, by combining three variations of substitution patterns on the benzene ring (1,2-, 1,3-, and 1,4-substitution) and two variations in the number of ethylene glycol units (2 or 1). We then tested the synthesized compounds for the BRD4 degradation activity of each. As expected, we found that 1,2D-EG2-MZ1 (2a), an MZ1 derivative with 1,2-disubstituted benzene possessing two ethylene glycol units, had an activity profile similar to that of MZ1 (1). Based on the structure of 2a, we then synthesized and evaluated four isomeric trivalent MZ1 derivatives, 15a-15d, having a tert-butyl ester unit on the benzene ring as a handle for further functionalization. Among the four isomers, 1,2,5T-EG2-MZ1 (15c) retained a level of BRD4 depletion activity similar to that of 2a without inducing a measurable Hook effect, and its BRD4 depletion kinetics was the same as that of MZ1 (1). Other isomers were also shown to retain BRD4 depletion activity. Thus, the trivalent PROTACs we synthesized here may serve as efficient platforms for further applications.


Asunto(s)
Proteínas Nucleares
9.
Proc Natl Acad Sci U S A ; 115(7): E1401-E1408, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29378950

RESUMEN

Different polyubiquitin chain linkages direct substrates toward distinct cellular pathways. K63-linked ubiquitylation is known to regulate proteasome-independent events such as signal transduction, but its function in the context of heterogeneous ubiquitin chains remains unclear. Here, we report that K63 ubiquitylation plays a critical role in proteasome-mediated substrate degradation by serving as a "seed" for K48/K63 branched ubiquitin chains. Quantitative analysis revealed that K48/K63 branched linkages preferentially associate with proteasomes in cells. We found that ITCH-dependent K63 ubiquitylation of the proapoptotic regulator TXNIP triggered subsequent assembly of K48/K63 branched chains by recruiting ubiquitin-interacting ligases such as UBR5, leading to TXNIP degradation. These results reveal a role for K63 chains as a substrate-specific mark for proteasomal degradation involved in regulating cell fate. Our findings provide insight into how cellular interpretation of the ubiquitin code is altered by combinations of ubiquitin linkages.


Asunto(s)
Proteínas Portadoras/metabolismo , Lisina/metabolismo , Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Células HeLa , Humanos , Proteolisis , Transducción de Señal
10.
Mol Cell ; 45(4): 494-504, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22365829

RESUMEN

Cell cycle-dependent expression of canonical histone proteins enables newly synthesized DNA to be integrated into chromatin in replicating cells. However, the molecular basis of cell cycle-dependency in the switching of histone gene regulation remains to be uncovered. Here, we report the identification and biochemical characterization of a molecular switcher, HERS (histone gene-specific epigenetic repressor in late S phase), for nucleosomal core histone gene inactivation in Drosophila. HERS protein is phosphorylated by a cyclin-dependent kinase (Cdk) at the end of S-phase. Phosphorylated HERS binds to histone gene regulatory regions and anchors HP1 and Su(var)3-9 to induce chromatin inactivation through histone H3 lysine 9 methylation. These findings illustrate a salient molecular switch linking epigenetic gene silencing to cell cycle-dependent histone production.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila/genética , Epigénesis Genética , Regulación de la Expresión Génica , Silenciador del Gen , Histonas/genética , Proteínas Represoras/fisiología , Animales , Ciclo Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fosforilación , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Fase S
13.
EMBO Rep ; 16(2): 192-201, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25527407

RESUMEN

Ubiquitylation is a versatile post-translational modification (PTM). The diversity of ubiquitylation topologies, which encompasses different chain lengths and linkages, underlies its widespread cellular roles. Here, we show that endogenous ubiquitin is acetylated at lysine (K)-6 (AcK6) or K48. Acetylated ubiquitin does not affect substrate monoubiquitylation, but inhibits K11-, K48-, and K63-linked polyubiquitin chain elongation by several E2 enzymes in vitro. In cells, AcK6-mimetic ubiquitin stabilizes the monoubiquitylation of histone H2B-which we identify as an endogenous substrate of acetylated ubiquitin-and of artificial ubiquitin fusion degradation substrates. These results characterize a mechanism whereby ubiquitin, itself a PTM, is subject to another PTM to modulate mono- and polyubiquitylation, thus adding a new regulatory layer to ubiquitin biology.


Asunto(s)
Poliubiquitina/metabolismo , Ubiquitina/metabolismo , Acetilación , Humanos , Procesamiento Proteico-Postraduccional , Ubiquitinación
14.
Nature ; 480(7378): 557-60, 2011 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-22121020

RESUMEN

Chromatin reorganization is governed by multiple post-translational modifications of chromosomal proteins and DNA. These histone modifications are reversible, dynamic events that can regulate DNA-driven cellular processes. However, the molecular mechanisms that coordinate histone modification patterns remain largely unknown. In metazoans, reversible protein modification by O-linked N-acetylglucosamine (GlcNAc) is catalysed by two enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). However, the significance of GlcNAcylation in chromatin reorganization remains elusive. Here we report that histone H2B is GlcNAcylated at residue S112 by OGT in vitro and in living cells. Histone GlcNAcylation fluctuated in response to extracellular glucose through the hexosamine biosynthesis pathway (HBP). H2B S112 GlcNAcylation promotes K120 monoubiquitination, in which the GlcNAc moiety can serve as an anchor for a histone H2B ubiquitin ligase. H2B S112 GlcNAc was localized to euchromatic areas on fly polytene chromosomes. In a genome-wide analysis, H2B S112 GlcNAcylation sites were observed widely distributed over chromosomes including transcribed gene loci, with some sites co-localizing with H2B K120 monoubiquitination. These findings suggest that H2B S112 GlcNAcylation is a histone modification that facilitates H2BK120 monoubiquitination, presumably for transcriptional activation.


Asunto(s)
Acetilglucosamina/metabolismo , Histonas/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Células HeLa , Histonas/química , Histonas/genética , Humanos , Modelos Moleculares , Mutación , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ubiquitinación
15.
Nature ; 461(7266): 1007-12, 2009 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-19829383

RESUMEN

Epigenetic modifications at the histone level affect gene regulation in response to extracellular signals. However, regulated epigenetic modifications at the DNA level, especially active DNA demethylation, in gene activation are not well understood. Here we report that DNA methylation/demethylation is hormonally switched to control transcription of the cytochrome p450 27B1 (CYP27B1) gene. Reflecting vitamin-D-mediated transrepression of the CYP27B1 gene by the negative vitamin D response element (nVDRE), methylation of CpG sites ((5m)CpG) is induced by vitamin D in this gene promoter. Conversely, treatment with parathyroid hormone, a hormone known to activate the CYP27B1 gene, induces active demethylation of the (5m)CpG sites in this promoter. Biochemical purification of a complex associated with the nVDRE-binding protein (VDIR, also known as TCF3) identified two DNA methyltransferases, DNMT1 and DNMT3B, for methylation of CpG sites, as well as a DNA glycosylase, MBD4 (ref. 10). Protein-kinase-C-phosphorylated MBD4 by parathyroid hormone stimulation promotes incision of methylated DNA through glycosylase activity, and a base-excision repair process seems to complete DNA demethylation in the MBD4-bound promoter. Such parathyroid-hormone-induced DNA demethylation and subsequent transcriptional derepression are impaired in Mbd4(-/-) mice. Thus, the present findings suggest that methylation switching at the DNA level contributes to the hormonal control of transcription.


Asunto(s)
Metilación de ADN/efectos de los fármacos , Hormona Paratiroidea/farmacología , Transcripción Genética/efectos de los fármacos , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/genética , Animales , Línea Celular , Islas de CpG/genética , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Glicosilasas/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Endodesoxirribonucleasas/deficiencia , Endodesoxirribonucleasas/genética , Ratones , Fosforilación , Proteína Quinasa C/metabolismo , Elementos de Respuesta/genética , Vitamina D/farmacología , ADN Metiltransferasa 3B
16.
Nat Cell Biol ; 9(11): 1273-85, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17952062

RESUMEN

Histone modifications induced by activated signalling cascades are crucial to cell-lineage decisions. Osteoblast and adipocyte differentiation from common mesenchymal stem cells is under transcriptional control by numerous factors. Although PPAR-gamma (peroxisome proliferator activated receptor-gamma) has been established as a prime inducer of adipogenesis, cellular signalling factors that determine cell lineage in bone marrow remain generally unknown. Here, we show that the non-canonical Wnt pathway through CaMKII-TAK1-TAB2-NLK transcriptionally represses PPAR-gamma transactivation and induces Runx2 expression, promoting osteoblastogenesis in preference to adipogenesis in bone marrow mesenchymal progenitors. Wnt-5a activates NLK (Nemo-like kinase), which in turn phosphorylates a histone methyltransferase, SETDB1 (SET domain bifurcated 1), leading to the formation of a co-repressor complex that inactivates PPAR-gamma function through histone H3-K9 methylation. These findings suggest that the non-canonical Wnt signalling pathway suppresses PPAR-gamma function through chromatin inactivation triggered by recruitment of a repressing histone methyltransferase, thus leading to an osteoblastic cell lineage from mesenchymal stem cells.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , PPAR gamma/metabolismo , Transducción de Señal/fisiología , Activación Transcripcional/fisiología , Proteínas Wnt/fisiología , Adipogénesis , Animales , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Regulación hacia Abajo , Vectores Genéticos , N-Metiltransferasa de Histona-Lisina/efectos de los fármacos , Ratones , Ratones Transgénicos , Mutación , Osteogénesis , PPAR gamma/efectos de los fármacos , PPAR gamma/genética , Fosforilación , Plásmidos , Transducción de Señal/efectos de los fármacos , Proteínas Wnt/genética , Proteínas Wnt/farmacología , Proteína Wnt-5a
17.
J Cell Biol ; 223(5)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38517379

RESUMEN

Ubiquitin regulates various cellular functions by posttranslationally modifying substrates with diverse ubiquitin codes. Recent discoveries of new ubiquitin chain topologies, types of bonds, and non-protein substrates have substantially expanded the complexity of the ubiquitin code. Here, we describe the ubiquitin system covering the basic principles and recent discoveries related to mechanisms, technologies, and biological importance.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteostasis , Ubiquitinación , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Humanos , Animales
18.
J Cell Biol ; 223(3)2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38180476

RESUMEN

K63-linked ubiquitin chains attached to plasma membrane proteins serve as tags for endocytosis and endosome-to-lysosome sorting. USP8 is an essential deubiquitinase for the maintenance of endosomal functions. Prolonged depletion of USP8 leads to cell death, but the major effects on cellular signaling pathways are poorly understood. Here, we show that USP8 depletion causes aberrant accumulation of K63-linked ubiquitin chains on endosomes and induces immune and stress responses. Upon USP8 depletion, two different decoders for K63-linked ubiquitin chains, TAB2/3 and p62, were recruited to endosomes and activated the TAK1-NF-κB and Keap1-Nrf2 pathways, respectively. Oxidative stress, an environmental stimulus that potentially suppresses USP8 activity, induced accumulation of K63-linked ubiquitin chains on endosomes, recruitment of TAB2, and expression of the inflammatory cytokine. The results demonstrate that USP8 is a gatekeeper of misdirected ubiquitin signals and inhibits immune and stress response pathways by removing K63-linked ubiquitin chains from endosomes.


Asunto(s)
Factor 2 Relacionado con NF-E2 , FN-kappa B , Ubiquitina Tiolesterasa , Endosomas/genética , Proteína 1 Asociada A ECH Tipo Kelch/genética , Factor 2 Relacionado con NF-E2/genética , FN-kappa B/genética , Ubiquitina/genética , Humanos , Ubiquitina Tiolesterasa/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética
19.
Nat Commun ; 15(1): 5379, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956052

RESUMEN

Targeted protein degradation is a groundbreaking modality in drug discovery; however, the regulatory mechanisms are still not fully understood. Here, we identify cellular signaling pathways that modulate the targeted degradation of the anticancer target BRD4 and related neosubstrates BRD2/3 and CDK9 induced by CRL2VHL- or CRL4CRBN -based PROTACs. The chemicals identified as degradation enhancers include inhibitors of cellular signaling pathways such as poly-ADP ribosylation (PARG inhibitor PDD00017273), unfolded protein response (PERK inhibitor GSK2606414), and protein stabilization (HSP90 inhibitor luminespib). Mechanistically, PARG inhibition promotes TRIP12-mediated K29/K48-linked branched ubiquitylation of BRD4 by facilitating chromatin dissociation of BRD4 and formation of the BRD4-PROTAC-CRL2VHL ternary complex; by contrast, HSP90 inhibition promotes BRD4 degradation after the ubiquitylation step. Consequently, these signal inhibitors sensitize cells to the PROTAC-induced apoptosis. These results suggest that various cell-intrinsic signaling pathways spontaneously counteract chemically induced target degradation at multiple steps, which could be liberated by specific inhibitors.


Asunto(s)
Proteínas de Ciclo Celular , Proteolisis , Transducción de Señal , Factores de Transcripción , Ubiquitinación , Humanos , Transducción de Señal/efectos de los fármacos , Proteolisis/efectos de los fármacos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Quinasa 9 Dependiente de la Ciclina/metabolismo , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas que Contienen Bromodominio
20.
J Exp Med ; 221(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38652464

RESUMEN

OTULIN-related autoinflammatory syndrome (ORAS), a severe autoinflammatory disease, is caused by biallelic pathogenic variants of OTULIN, a linear ubiquitin-specific deubiquitinating enzyme. Loss of OTULIN attenuates linear ubiquitination by inhibiting the linear ubiquitin chain assembly complex (LUBAC). Here, we report a patient who harbors two rare heterozygous variants of OTULIN (p.P152L and p.R306Q). We demonstrated accumulation of linear ubiquitin chains upon TNF stimulation and augmented TNF-induced cell death in mesenchymal stem cells differentiated from patient-derived iPS cells, which confirms that the patient has ORAS. However, although the de novo p.R306Q variant exhibits attenuated deubiquitination activity without reducing the amount of OTULIN, the deubiquitination activity of the p.P152L variant inherited from the mother was equivalent to that of the wild-type. Patient-derived MSCs in which the p.P152L variant was replaced with wild-type also exhibited augmented TNF-induced cell death and accumulation of linear chains. The finding that ORAS can be caused by a dominant-negative p.R306Q variant of OTULIN furthers our understanding of disease pathogenesis.


Asunto(s)
Ubiquitinación , Femenino , Humanos , Endopeptidasas/genética , Endopeptidasas/metabolismo , Enfermedades Autoinflamatorias Hereditarias/genética , Enfermedades Autoinflamatorias Hereditarias/patología , Enfermedades Autoinflamatorias Hereditarias/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Mutación , Linaje , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Ubiquitina/metabolismo , Recién Nacido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA