Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell ; 45(4): 529-40, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22281052

RESUMEN

α-helical integral membrane proteins critically depend on the correct insertion of their transmembrane α helices into the lipid bilayer for proper folding, yet a surprisingly large fraction of the transmembrane α helices in multispanning integral membrane proteins are not sufficiently hydrophobic to insert into the target membrane by themselves. How can such marginally hydrophobic segments nevertheless form transmembrane helices in the folded structure? Here, we show that a transmembrane helix with a strong orientational preference (N(cyt)-C(lum) or N(lum)-C(cyt)) can both increase and decrease the hydrophobicity threshold for membrane insertion of a neighboring, marginally hydrophobic helix. This effect helps explain the "missing hydrophobicity" in polytopic membrane proteins.


Asunto(s)
Retículo Endoplásmico/fisiología , Proteínas de Escherichia coli/química , Proteínas de la Membrana/química , Transportadores de Anión Orgánico Sodio-Dependiente/química , Serina Endopeptidasas/química , Simportadores/química , Animales , Células Cultivadas , Perros , Retículo Endoplásmico/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Microsomas/química , Estructura Secundaria de Proteína
2.
Proc Natl Acad Sci U S A ; 113(38): 10559-64, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27601675

RESUMEN

Cotranslational translocon-mediated insertion of membrane proteins into the endoplasmic reticulum is a key process in membrane protein biogenesis. Although the mechanism is understood in outline, quantitative data on the energetics of the process is scarce. Here, we have measured the effect on membrane integration efficiency of nonproteinogenic analogs of the positively charged amino acids arginine and lysine incorporated into model transmembrane segments. We provide estimates of the influence on the apparent free energy of membrane integration (ΔGapp) of "snorkeling" of charged amino acids toward the lipid-water interface, and of charge neutralization. We further determine the effect of fluorine atoms and backbone hydrogen bonds (H-bonds) on ΔGapp These results help establish a quantitative basis for our understanding of membrane protein assembly in eukaryotic cells.


Asunto(s)
Aminoácidos/química , Retículo Endoplásmico/metabolismo , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/metabolismo , Aminoácidos/genética , Retículo Endoplásmico/química , Entropía , Escherichia coli/enzimología , Escherichia coli/genética , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Modelos Moleculares , Estructura Secundaria de Proteína , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Termodinámica , Agua/química
3.
J Biol Chem ; 292(27): 11349-11360, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28512128

RESUMEN

The oligosaccharyltransferase complex, localized in the endoplasmic reticulum (ER) of eukaryotic cells, is responsible for the N-linked glycosylation of numerous protein substrates. The membrane protein STT3 is a highly conserved part of the oligosaccharyltransferase and likely contains the active site of the complex. However, understanding the catalytic determinants of this system has been challenging, in part because of a discrepancy in the structural topology of the bacterial versus eukaryotic proteins and incomplete information about the mechanism of membrane integration. Here, we use a glycosylation mapping approach to investigate these questions. We measured the membrane integration efficiency of the mouse STT3-A and yeast Stt3p transmembrane domains (TMDs) and report a refined topology of the N-terminal half of the mouse STT3-A. Our results show that most of the STT3 TMDs are well inserted into the ER membrane on their own or in the presence of the natural flanking residues. However, for the mouse STT3-A hydrophobic domains 4 and 6 and yeast Stt3p domains 2, 3a, 3c, and 6 we measured reduced insertion efficiency into the ER membrane. Furthermore, we mapped the first half of the STT3-A protein, finding two extra hydrophobic domains between the third and the fourth TMD. This result indicates that the eukaryotic STT3 has 13 transmembrane domains, consistent with the structure of the bacterial homolog of STT3 and setting the stage for future combined efforts to interrogate this fascinating system.


Asunto(s)
Retículo Endoplásmico , Hexosiltransferasas , Membranas Intracelulares , Proteínas de la Membrana , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animales , Retículo Endoplásmico/química , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Hexosiltransferasas/química , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Dominios Proteicos , Estructura Cuaternaria de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
J Cell Sci ; 126(Pt 2): 464-72, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23230148

RESUMEN

The integration of transmembrane (TM)-spanning regions of many channels and ion transporters is potentially compromised by the presence of polar and charged residues required for biological function. Although the two TMs of the ATP-gated ion channel subunit P2X2 each contain charged/polar amino acids, we found that each TM is efficiently membrane inserted when it is analysed in isolation, and uncovered no evidence for cooperativity between these two TMs during P2X2 integration. However, using minimal N-glycosylation distance mapping, we find that the positioning of TM2 in newly synthesized P2X2 monomers is distinct from that seen in subunits of the high-resolution structures of assembled homologous trimers. We conclude that P2X2 monomers are initially synthesised at the endoplasmic reticulum in a distinct conformation, where the extent of the TM-spanning regions is primarily defined by the thermodynamic cost of their membrane integration at the Sec61 translocon. In this model, TM2 of P2X2 subsequently undergoes a process of positional editing within the membrane that correlates with trimerisation of the monomer, a process requiring specific polar/charged residues in both TM1 and TM2. We postulate that the assembly process offsets any energetic cost of relocating TM2, and find evidence that positional editing of TM2 in the acid-sensing ion channel (ASIC1a) is even more pronounced than that observed for P2X2. Taken together, these data further underline the potential complexities involved in accurately predicting TM domains. We propose that the orchestrated repositioning of TM segments during subunit oligomerisation plays an important role in generating the functional architecture of active ion channels, and suggest that the regulation of this underappreciated biosynthetic step may provide an elegant mechanism for maintaining ER homeostasis.


Asunto(s)
Retículo Endoplásmico/metabolismo , Canales Iónicos/metabolismo , Canales Iónicos Sensibles al Ácido/química , Canales Iónicos Sensibles al Ácido/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Membrana Celular/metabolismo , Células Cultivadas , Células HeLa , Humanos , Canales Iónicos/química , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Subunidades de Proteína , Ratas , Receptores Purinérgicos P2X2/química , Receptores Purinérgicos P2X2/metabolismo , Transducción de Señal , Termodinámica
5.
J Membr Biol ; 248(3): 383-94, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25281329

RESUMEN

The diphtheria toxin translocation (T) domain inserts into the endosomal membrane in response to the endosomal acidification and enables the delivery of the catalytic domain into the cell. The insertion pathway consists of a series of conformational changes that occur in solution and in the membrane and leads to the conversion of a water-soluble state into a transmembrane state. In this work, we utilize various biophysical techniques to characterize the insertion pathway from the thermodynamic perspective. Thermal and chemical unfolding measured by differential scanning calorimetry, circular dichroism, and tryptophan fluorescence reveal that the free energy of unfolding of the T-domain at neutral and mildly acidic pH differ by 3-5 kcal/mol, depending on the experimental conditions. Fluorescence correlation spectroscopy measurements show that the free energy change from the membrane-competent state to the interfacial state is approximately -8 kcal/mol and is pH-independent, while that from the membrane-competent state to the transmembrane state ranges between -9.5 and -12 kcal/mol, depending on the membrane lipid composition and pH. Finally, the thermodynamics of transmembrane insertion of individual helices was tested using an in vitro assay that measures the translocon-assisted integration of test sequences into the microsomal membrane. These experiments suggest that even the most hydrophobic helix TH8 has only a small favorable free energy of insertion. The free energy for the insertion of the consensus insertion unit TH8-TH9 is slightly more favorable, yet less favorable than that measured for the entire protein, suggesting a cooperative effect for the membrane insertion of the helices of the T-domain.


Asunto(s)
Toxina Diftérica/química , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Unión Proteica , Replegamiento Proteico , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Termodinámica
6.
Proc Natl Acad Sci U S A ; 108(31): E359-64, 2011 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-21606334

RESUMEN

Integral membrane proteins are integrated cotranslationally into the membrane of the endoplasmic reticulum in a process mediated by the Sec61 translocon. Transmembrane α-helices in a translocating polypeptide chain gain access to the surrounding membrane through a lateral gate in the wall of the translocon channel [van den Berg B, et al. (2004) Nature 427:36-44; Zimmer J, et al. (2008) Nature 455:936-943; Egea PF, Stroud RM (2010) Proc Natl Acad Sci USA 107:17182-17187]. To clarify the nature of the membrane-integration process, we have measured the insertion efficiency into the endoplasmic reticulum membrane of model hydrophobic segments containing nonproteinogenic aliphatic and aromatic amino acids. We find that an amino acid's contribution to the apparent free energy of membrane-insertion is directly proportional to the nonpolar accessible surface area of its side chain, as expected for thermodynamic partitioning between aqueous and nonpolar phases. But unlike bulk-phase partitioning, characterized by a nonpolar solvation parameter of 23 cal/(mol · Å(2)), the solvation parameter for transfer from translocon to bilayer is 6-10 cal/(mol · Å(2)), pointing to important differences between translocon-guided partitioning and simple water-to-membrane partitioning. Our results provide compelling evidence for a thermodynamic partitioning model and insights into the physical properties of the translocon.


Asunto(s)
Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Fragmentos de Péptidos/metabolismo , Secuencia de Aminoácidos , Animales , Perros , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/química , Modelos Moleculares , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Estructura Secundaria de Proteína , Transporte de Proteínas , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Electricidad Estática , Termodinámica
7.
Biochem Biophys Res Commun ; 439(2): 203-8, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-23988446

RESUMEN

Epithelial cell adhesion molecule (EpCAM) is an epithelial and cancer cell "marker" and there is a cumulative and growing evidence of its signaling role. Its importance has been recognized as part of the breast cancer stem cell phenotype, the tumorigenic breast cancer stem cell is EpCAM(+). In spite of its complex functions in normal cell development and cancer, relatively little is known about EpCAM-interacting proteins. We used breast cancer cell lines and performed EpCAM co-immunoprecipitation followed by mass spectrometry in search for novel potentially interacting proteins. The endoplasmic reticulum aminopeptidase 2 (ERAP2) was found to co-precipitate with EpCAM and to co-localize in the cytoplasm/ER and the plasma membrane. ERAP2 is a proteolytic enzyme set in the endoplasmic reticulum (ER) where it plays a central role in the trimming of peptides for presentation by MHC class I molecules. Expression of EpCAM and ERAP2 in vitro in the presence of dog pancreas rough microsomes (ER vesicles) confirmed N-linked glycosylation, processing in ER and the size of EpCAM. The association between ERAP2 and EpCAM is a unique and novel finding that provides new ideas on EpCAM processing and on how antigen presentation may be regulated in cancer.


Asunto(s)
Aminopeptidasas/metabolismo , Antígenos de Neoplasias/metabolismo , Neoplasias de la Mama/metabolismo , Mama/patología , Moléculas de Adhesión Celular/metabolismo , Aminopeptidasas/análisis , Animales , Antígenos de Neoplasias/análisis , Mama/metabolismo , Neoplasias de la Mama/patología , Moléculas de Adhesión Celular/análisis , Línea Celular Tumoral , Perros , Molécula de Adhesión Celular Epitelial , Femenino , Glicosilación , Humanos
8.
Nat Med ; 21(4): 314-7, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25751816

RESUMEN

Rosetting is a virulent Plasmodium falciparum phenomenon associated with severe malaria. Here we demonstrate that P. falciparum-encoded repetitive interspersed families of polypeptides (RIFINs) are expressed on the surface of infected red blood cells (iRBCs), where they bind to RBCs--preferentially of blood group A--to form large rosettes and mediate microvascular binding of iRBCs. We suggest that RIFINs have a fundamental role in the development of severe malaria and thereby contribute to the varying global distribution of ABO blood groups in the human population.


Asunto(s)
Antígenos de Protozoos/fisiología , Eritrocitos/parasitología , Malaria Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/fisiología , Sistema del Grupo Sanguíneo ABO , Animales , Células CHO , Cricetinae , Cricetulus , Perros , Drosophila , Escherichia coli/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Inmunoglobulina G/inmunología , Masculino , Microcirculación , Microscopía Confocal , Microsomas/metabolismo , Páncreas/parasitología , Multimerización de Proteína , Ratas , Ratas Sprague-Dawley , Análisis de Secuencia de ARN , Transfección
9.
FEBS Open Bio ; 4: 393-406, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24918054

RESUMEN

The enzyme complex γ-secretase generates amyloid ß-peptide (Aß), a 37-43-residue peptide associated with Alzheimer disease (AD). Mutations in presenilin 1 (PS1), the catalytical subunit of γ-secretase, result in familial AD (FAD). A unifying theme among FAD mutations is an alteration in the ratio Aß species produced (the Aß42/Aß40 ratio), but the molecular mechanisms responsible remain elusive. In this report we have studied the impact of several different PS1 FAD mutations on the integration of selected PS1 transmembrane domains and on PS1 active site conformation, and whether any effects translate to a particular amyloid precursor protein (APP) processing phenotype. Most mutations studied caused an increase in the Aß42/Aß40 ratio, but via different mechanisms. The mutations that caused a particular large increase in the Aß42/Aß40 ratio did also display an impaired APP intracellular domain (AICD) formation and a lower total Aß production. Interestingly, seven mutations close to the catalytic site caused a severely impaired integration of proximal transmembrane/hydrophobic sequences into the membrane. This structural defect did not correlate to a particular APP processing phenotype. Six selected FAD mutations, all of which exhibited different APP processing profiles and impact on PS1 transmembrane domain integration, were found to display an altered active site conformation. Combined, our data suggest that FAD mutations affect the PS1 structure and active site differently, resulting in several complex APP processing phenotypes, where the most aggressive mutations in terms of increased Aß42/Aß40 ratio are associated with a decrease in total γ-secretase activity.

10.
J Mol Biol ; 425(15): 2813-22, 2013 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-23659793

RESUMEN

Most integral membrane proteins, both in prokaryotic and eukaryotic cells, are co-translationally inserted into the membrane via Sec-type translocons: the SecYEG complex in prokaryotes and the Sec61 complex in eukaryotes. The contributions of individual amino acids to the overall free energy of membrane insertion of single transmembrane α-helices have been measured for Sec61-mediated insertion into the endoplasmic reticulum (ER) membrane (Nature 450:1026-1030) but have not been systematically determined for SecYEG-mediated insertion into the bacterial inner membrane. We now report such measurements, carried out in Escherichia coli. Overall, there is a good correlation between the results found for the mammalian ER and the E. coli inner membrane, but the hydrophobicity threshold for SecYEG-mediated insertion is distinctly lower than that for Sec61-mediated insertion.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Escherichia coli/química , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/química , Transporte de Proteínas , Canales de Translocación SEC , Termodinámica
11.
J Mol Biol ; 396(1): 221-9, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-19931281

RESUMEN

In mammalian cells, most integral membrane proteins are initially inserted into the endoplasmic reticulum membrane by the so-called Sec61 translocon. However, recent predictions suggest that many transmembrane helices (TMHs) in multispanning membrane proteins are not sufficiently hydrophobic to be recognized as such by the translocon. In this study, we have screened 16 marginally hydrophobic TMHs from membrane proteins of known three-dimensional structure. Indeed, most of these TMHs do not insert efficiently into the endoplasmic reticulum membrane by themselves. To test if loops or TMHs immediately upstream or downstream of a marginally hydrophobic helix might influence the insertion efficiency, insertion of marginally hydrophobic helices was also studied in the presence of their neighboring loops and helices. The results show that flanking loops and nearest-neighbor TMHs are sufficient to ensure the insertion of many marginally hydrophobic helices. However, for at least two of the marginally hydrophobic helices, the local interactions are not enough, indicating that post-insertional rearrangements are involved in the folding of these proteins.


Asunto(s)
Membrana Celular/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas/química , Proteínas/metabolismo , Secuencia de Aminoácidos , Animales , Bioensayo , Humanos , Estructura Secundaria de Proteína , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA