RESUMEN
Zinc fluctuations regulate key steps in late oocyte and preimplantation embryo development; however, roles for zinc in preceding stages in early ovarian follicle development, when cooperative interactions exist between the oocyte and somatic cells, are unknown. To understand the roles of zinc during early follicle development, we applied single cell X-ray fluorescence microscopy, a radioactive zinc tracer, and a labile zinc probe to measure zinc in individual mouse oocytes and associated somatic cells within early follicles. Here, we report a significant stage-specific increase and compartmental redistribution in oocyte zinc content upon the initiation of early follicle growth. The increase in zinc correlates with the increased expression of specific zinc transporters, including two that are essential in oocyte maturation. While oocytes in follicles exhibit high tolerance to pronounced changes in zinc availability, somatic survival and proliferation are significantly more sensitive to zinc chelation or supplementation. Finally, transcriptomic, proteomic, and zinc loading analyses reveal enrichment of zinc targets in the ubiquitination pathway. Overall, these results demonstrate that distinct cell type-specific zinc regulations are required for follicle growth and indicate that physiological fluctuation in the localization and availability of this inorganic cofactor has fundamental functions in early gamete development.
Asunto(s)
Folículo Ovárico , Zinc , Animales , Femenino , Ratones , Oocitos/metabolismo , Oogénesis/fisiología , Folículo Ovárico/fisiología , Proteómica , Zinc/metabolismoRESUMEN
ZF proteins are ubiquitous eukaryotic proteins that play important roles in gene regulation. ZFs contain small domains made up of a combination of four cysteine and histidine residues, and are classified based up on the identity of these residues and their spacing. One emerging class of ZFs are the Cys3His (or CCCH) class of ZFs. These ZFs play key roles in regulating RNA. In this minireview, an overview of the CCCH class of ZFs, with a focus on tristetraprolin (TTP) is provided. TTP regulates inflammation by controlling cytokine mRNAs, and there is an interest in modulating TTP activity to control inflammation. Two methods to control TTP activity are to target with exogenous metals (a 'metals in medicine' approach) or to target with endogenous signaling molecules. Work that has been done to target TTP with Fe, Cu, Cd and Au as well as with H2S is reviewed. This includes attention to new methods that have been developed to monitor metal exchange with the spectroscopically silent ZnII including native electro-spray ionization mass spectrometry (ESI-MS), spin-filter inductively coupled plasma mass spectrometry (ICP-MS) and cryo-electro-spray mass spectrometry (CSI-MS); along with fluorescence anisotropy (FA) to follow RNA binding.
RESUMEN
Combating influenza is one of the perennial global public health issues to be managed. Antiviral drugs are useful for the treatment of influenza in the absence of an appropriate vaccine. However, the appearance of resistant strains necessitates a constant search for new drugs. In this study, we investigated novel anti-influenza drug candidates using in vitro and in vivo assays. We identified anti-influenza hit compounds using a high-throughput screening method with a green fluorescent protein-tagged recombinant influenza virus. Through subsequent analyses of their cytotoxicity and pharmacokinetic properties, one candidate (IY7640) was selected for further evaluation. In a replication kinetics analysis, IY7640 showed greater inhibitory effects during the early phase of viral infection than the viral neuraminidase inhibitor oseltamivir. In addition, we observed that hemagglutinin (HA)-mediated membrane fusion was inhibited by IY7640 treatment, indicating that the HA stalk region, which is highly conserved across various (sub)types of influenza viruses, may be the molecular target of IY7640. In an escape mutant analysis in cells, amino acid mutations were identified at the HA stalk region of the 2009 pandemic H1N1 (pH1N1) virus. Even though the in vivo efficacy of IY7640 did not reach complete protection in a lethal challenge study in mice, these results suggest that IY7640 has potential to be developed as a new type of anti-influenza drug.IMPORTANCE Anti-influenza drugs with broad-spectrum efficacy against antigenically diverse influenza viruses can be highly useful when no vaccines are available. To develop new anti-influenza drugs, we screened a number of small molecules and identified a strong candidate, IY7640. When added at the time of or after influenza virus infection, IY7640 was observed to successfully inhibit or reduce viral replication in cells. We subsequently discovered that IY7640 targets the stalk region of the influenza HA protein, which exhibits a relatively high degree of amino acid sequence conservation across various (sub)types of influenza viruses. Furthermore, IY7640 was observed to block HA-mediated membrane fusion of H1N1, H3N2, and influenza B viruses in cells. Although it appears less effective against strains other than H1N1 subtype viruses in a challenge study in mice, we suggest that the small molecule IY7640 has potential to be optimized as a new anti-influenza drug.
Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H1N1 del Virus de la Influenza A/fisiología , Vacunas contra la Influenza/administración & dosificación , Infecciones por Orthomyxoviridae/prevención & control , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Animales , Chlorocebus aethiops , Modelos Animales de Enfermedad , Perros , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/genética , Vacunas contra la Influenza/farmacología , Células de Riñón Canino Madin Darby , Fusión de Membrana/efectos de los fármacos , Ratones , Mutación , Infecciones por Orthomyxoviridae/inmunología , Bibliotecas de Moléculas Pequeñas/farmacología , Células Vero , Replicación Viral/efectos de los fármacosRESUMEN
The zinc finger protein tristetraprolin (TTP) regulates inflammation by downregulating cytokine mRNAs. Misregulation results in arthritis, sepsis and cancer, and there is an interest in modulating TTP activity with exogenous agents. Gold has anti-inflammatory properties and has recently been shown to modulate the signaling pathway that produces TTP, suggesting that TTP may be a target of gold. The reactivity of [AuIII (terpy)Cl]Cl2 with TTP was investigated by UV/Vis spectroscopy, spin-filter inductively coupled plasma mass spectrometry, X-ray absorption spectroscopy and native electrospray ionization mass spectrometry. AuIII was found to replace zinc in the protein active site in the reduced AuI form, with the AuI ion coordinated to two cysteine residues in a linear geometry. The replacement of ZnII with AuI results in loss of both secondary structure and RNA binding function. In contrast, when ZnII TTP is bound to its RNA target, no replacement of ZnII with AuI is observed, even in the presence of excess AuIII terpy. This discovery of differential reactivity of gold with TTP versus TTP/RNA offers a potential strategy for selective targeting with gold complexes to control inflammation.
Asunto(s)
Cisteína/química , Citocinas/química , ARN Mensajero/metabolismo , ARN/química , Tristetraprolina/química , Humanos , Inflamación , Compuestos Orgánicos de Oro/química , ARN Mensajero/química , ARN Mensajero/genética , Tristetraprolina/genética , Tristetraprolina/metabolismo , Dedos de ZincRESUMEN
H2 S is a gaseous signaling molecule that modifies cysteine residues in proteins to form persulfides (P-SSH). One family of proteins modified by H2 S are zinc finger (ZF) proteins, which contain multiple zinc-coordinating cysteine residues. Herein, we report the reactivity of H2 S with a ZF protein called tristetraprolin (TTP). Rapid persulfidation leading to complete thiol oxidation of TTP mediated by H2 S was observed by low-temperature ESI-MS and fluorescence spectroscopy. Persulfidation of TTP required O2 , which reacts with H2 S to form superoxide, as detected by ESI-MS, a hydroethidine fluorescence assay, and EPR spin trapping. H2 S was observed to inhibit TTP function (binding to TNFα mRNA) by an in vitro fluorescence anisotropy assay and to modulate TNFα in vivo. H2 S was unreactive towards TTP when the protein was bound to RNA, thus suggesting a protective effect of RNA.
Asunto(s)
Sulfuro de Hidrógeno/química , Tristetraprolina/química , Dedos de Zinc , Zinc/química , Animales , Sitios de Unión , Ratones , Oxidación-Reducción , Sulfuros/químicaRESUMEN
Tristetraprolin (TTP) is a nonclassical zinc finger (ZF) protein that plays a key role in regulating inflammatory response. TTP regulates cytokines at the mRNA level by binding to AU-rich sequences present at the 3'-untranslated region, forming a complex that is then degraded. TTP contains two conserved CCCH domains with the sequence CysX8CysX5CysX3His that are activated to bind RNA when zinc is coordinated. During inflammation, copper levels are elevated, which is associated with increased inflammatory response. A potential target for Cu(I) during inflammation is TTP. To determine whether Cu(I) binds to TTP and how Cu(I) can affect TTP/RNA binding, two TTP constructs were prepared. One construct contained just the first CCCH domain (TTP-1D) and serves as a peptide model for a CCCH domain; the second construct contains both CCCH domains (TTP-2D) and is functional (binds RNA) when Zn(II) is coordinated. Cu(I) binding to TTP-1D was assessed via electronic absorption spectroscopy titrations, and Cu(I) binding to TTP-2D was assessed via both absorption spectroscopy and a spin filter/inductively coupled plasma mass spectrometry (ICP-MS) assay. Cu(I) binds to TTP-1D with a 1:1 stoichiometry and to TTP-2D with a 3:1 stoichiometry. The CD spectrum of Cu(I)-TTP-2D did not exhibit any secondary structure, matching that of apo-TTP-2D, while Zn(II)-TTP-2D exhibited a secondary structure. Measurement of RNA binding via fluorescence anisotropy revealed that Cu(I)-TTP-2D does not bind to the TTP-2D RNA target sequence UUUAUUUAUUU with any measurable affinity, while Zn(II)-TTP-2D binds to this site with nanomolar affinity. Similarly, addition of Cu(I) to the Zn(II)-TTP-2D/RNA complex resulted in inhibition of RNA binding. Together, these data indicate that, while Cu(I) binds to TTP-2D, it does not result in a folded or functional protein and that Cu(I) inhibits Zn(II)-TTP-2D/RNA binding.
Asunto(s)
Cobre/farmacología , Tristetraprolina/química , Tristetraprolina/genética , Cobre/química , Unión Proteica/efectos de los fármacos , Conformación Proteica/efectos de los fármacos , ARN/genética , ARN/metabolismo , Tristetraprolina/metabolismo , Zinc/química , Zinc/metabolismoRESUMEN
Novel pyrone-derived quorum sensing (QS) ligands to inhibit the binding of OdDHL to the LasR of Pseudomonas aeruginosa were designed, synthesized and evaluated. Among the analogs, the most potent compound 8 exhibited strong in vitro inhibitory activities against biofilm formation and down-regulated OdDHL/LasR-associated genes by 35-67%. The binding mode of 8 in silico was highly similar to that of the crystal ligand OdDHL in the active site of LasR.
Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Biopelículas/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pironas/farmacología , Percepción de Quorum/efectos de los fármacos , Transactivadores/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Antibacterianos/química , Homoserina/análogos & derivados , Homoserina/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/prevención & control , Pseudomonas aeruginosa/fisiología , Pironas/química , Relación Estructura-ActividadRESUMEN
Glutamate carboxypeptidase II (GCPII) is a zinc metalloprotease on the surface of astrocytes which cleaves N-acetylaspartylglutamate to release N-acetylaspartate and glutamate. GCPII inhibitors can decrease glutamate concentration and play a protective role against apoptosis or degradation of brain neurons. Herein, we report the synthesis and structural analysis of novel carborane-based GCPII inhibitors. We determined the X-ray crystal structure of GCPII in complex with a carborane-containing inhibitor at 1.79Å resolution. The X-ray analysis revealed that the bulky closo-carborane cluster is located in the spacious entrance funnel region of GCPII, indicating that the carborane cluster can be further structurally modified to identify promising lead structures of novel GCPII inhibitors.
Asunto(s)
Compuestos de Boro/síntesis química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Urea/análogos & derivados , Compuestos de Boro/química , Compuestos de Boro/farmacología , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Glutamato Carboxipeptidasa II/ultraestructura , Humanos , Urea/síntesis química , Urea/química , Urea/farmacologíaRESUMEN
Pathogenesis of COVID-19 by SARS-CoV-2 resulted in a global pandemic and public health emergency in 2020. Viral infection can induce oxidative stress through reactive oxygen species (ROS). Inflammation and environmental stress are major sources of oxidative stress after infection. Micronutrients such as iron, copper, zinc, and manganese play various roles in human tissues and their imbalance in blood can impact immune responses against pathogens including SARS CoV-2. We hypothesized that alteration of free metal ions during infection and metal-catalyzed oxidation plays a critical role towards pathogenesis after infection. We analyzed convalescent and hospitalized COVID-19 patient plasma using orthogonal analytical techniques to determine redox active metal concentrations, overall protein oxidation, oxidative modifications, and protein levels via proteomics to understand the consequences of metal-induced oxidative stress in COVID-19 plasma proteins. Metal analysis using ICP-MS showed significantly greater concentrations of copper in COVID-19 plasma compared to healthy controls. We demonstrate significantly greater total protein carbonylation, other oxidative modifications, and deamidation of plasma proteins in COVID-19 plasma compared to healthy controls. Proteomics analysis showed that levels of redox active proteins including hemoglobulin were elevated in COVID-19 plasma. Molecular modeling concurred with potential interactions between iron binding proteins and SARS CoV-2 surface proteins. Overall, increased levels of redox active metals and protein oxidation indicate that oxidative stress-induced protein oxidation in COVID-19 may be a consequence of the interactions of SARS-CoV-2 proteins with host cell metal binding proteins resulting in altered cellular homeostasis.
Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Cobre , Estrés Oxidativo , Metales/metabolismo , Oxidación-ReducciónRESUMEN
Identification of potent agonists of odorant receptors (ORs), a major class of Gâ protein-coupled receptors, remains challenging due to complex receptor-ligand interactions. ORs are present in both olfactory and non-chemosensory tissues, indicating roles beyond odor detection that may include modulating physiological functions in non-olfactory tissues. Selective and potent agonists specific for particular ORs can be used to investigate physiological functions of ORs in non-chemosensory tissues. In this study, we designed and synthesized novel synthetic dehydroacetic acid analogues as agonists of odorant receptor 895 (Olfr895) expressed in bladder. Among the synthesized analogues, (E)-3-((E)-1-hydroxy-3-(piperidin-1-yl)allylidene)-6-methyl-2H-pyran-2,4(3H)-dione (10) exhibited extremely high agonistic activity for Olfr895 in Dual-Glo luciferase reporter (EC50 =9â nm), Ca2+ imaging, and chemotactic migration assays. Molecular docking and site-directed mutagenesis studies suggested that a combination of hydrophilic and hydrophobic interactions is central to the selective and specific binding of 10 to Olfr895. The design of agonists armed with both hydrophilic and hydrophobic portions could therefore lead to highly potent and selective ligands for ectopic ORs.
Asunto(s)
Pironas/química , Receptores Odorantes/agonistas , Animales , Sitios de Unión , Línea Celular , Movimiento Celular/efectos de los fármacos , Genes Reporteros , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/patología , Estructura Terciaria de Proteína , Pironas/síntesis química , Pironas/metabolismo , Pironas/farmacología , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Relación Estructura-Actividad , Vejiga Urinaria/metabolismo , Vejiga Urinaria/patologíaRESUMEN
Cell surface biomarkers such as prostate-specific membrane antigen (PSMA) and hepsin have received considerable attention as targets for imaging prostate cancer (PCa) due to their high cell surface expression in such tumors and easy access for imaging probes. Novel amidine-containing indole analogs (13-21) as hepsin inhibitors were designed and synthesized. These compounds showed in vitro inhibitory activity against hepsin with IC50 values from 5.9 to 70 µM. Based on the SAR of amidine-derived analogs, the novel heterobivalent compound 30, targeting both hepsin and PSMA, was synthesized by linking compound 18 with Lys-urea-Glu, the key scaffold for the specific binding to PSMA, followed by the conjugation of the optical dye SulfoCy7. Compound 30 exhibited inhibitory activities against PSMA and hepsin, with IC50 values of 28 nM and 2.8 µM, respectively. In vitro cell uptake and preliminary in vivo optical imaging studies of 30 showed selective binding and retention in both PSMA and hepsin high-expressing PC3/ML-PSMA-HPN cells as compared with low-expressing PC3/ML cells.