Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Nanotechnol ; 16(6): 667-672, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33875869

RESUMEN

The success of semiconductor electronics is built on the creation of compact, low-power switching elements that offer routing, logic and memory functions. The availability of nanoscale optical switches could have a similarly transformative impact on the development of dynamic and programmable metasurfaces, optical neural networks and quantum information processing. Phase-change materials are uniquely suited to enable their creation as they offer high-speed electrical switching between amorphous and crystalline states with notably different optical properties. Their high refractive index has already been harnessed to fashion them into compact optical antennas. Here, we take the next important step, by showing electrically-switchable phase-change antennas and metasurfaces that offer strong, reversible, non-volatile, multi-phase switching and spectral tuning of light scattering in the visible and near-infrared spectral ranges. Their successful implementation relies on a careful joint thermal and optical optimization of the antenna elements that comprise a silver strip that simultaneously serves as a plasmonic resonator and a miniature heating stage. Our metasurface affords electrical modulation of the reflectance by more than fourfold at 755 nm.

2.
ACS Nano ; 10(8): 7507-14, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27434729

RESUMEN

Two-dimensional (2D) semimetals beyond graphene have been relatively unexplored in the atomically thin limit. Here, we introduce a facile growth mechanism for semimetallic WTe2 crystals and then fabricate few-layer test structures while carefully avoiding degradation from exposure to air. Low-field electrical measurements of 80 nm to 2 µm long devices allow us to separate intrinsic and contact resistance, revealing metallic response in the thinnest encapsulated and stable WTe2 devices studied to date (3-20 layers thick). High-field electrical measurements and electrothermal modeling demonstrate that ultrathin WTe2 can carry remarkably high current density (approaching 50 MA/cm(2), higher than most common interconnect metals) despite a very low thermal conductivity (of the order ∼3 Wm(-1) K(-1)). These results suggest several pathways for air-stable technological viability of this layered semimetal.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA