Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell ; 155(6): 1351-64, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24290359

RESUMEN

Parkinson's disease (PD) is characterized by loss of A9 dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). An association has been reported between PD and exposure to mitochondrial toxins, including environmental pesticides paraquat, maneb, and rotenone. Here, using a robust, patient-derived stem cell model of PD allowing comparison of A53T α-synuclein (α-syn) mutant cells and isogenic mutation-corrected controls, we identify mitochondrial toxin-induced perturbations in A53T α-syn A9 DA neurons (hNs). We report a pathway whereby basal and toxin-induced nitrosative/oxidative stress results in S-nitrosylation of transcription factor MEF2C in A53T hNs compared to corrected controls. This redox reaction inhibits the MEF2C-PGC1α transcriptional network, contributing to mitochondrial dysfunction and apoptotic cell death. Our data provide mechanistic insight into gene-environmental interaction (GxE) in the pathogenesis of PD. Furthermore, using small-molecule high-throughput screening, we identify the MEF2C-PGC1α pathway as a therapeutic target to combat PD.


Asunto(s)
Interacción Gen-Ambiente , Mitocondrias/efectos de los fármacos , Paraquat/toxicidad , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Factores de Transcripción MEF2 , Mutación/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo , Enfermedad de Parkinson/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Especies de Nitrógeno Reactivo/metabolismo , Sustancia Negra/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
2.
Proc Natl Acad Sci U S A ; 114(20): E4048-E4056, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28461502

RESUMEN

Gaining mechanistic insight into interaction between causative factors of complex multifactorial diseases involving photoreceptor damage might aid in devising effective therapies. Oxidative stress is one of the potential unifying mechanisms for interplay between genetic and environmental factors that contribute to photoreceptor pathology. Interestingly, the transcription factor myocyte enhancer factor 2d (MEF2D) is known to be important in photoreceptor survival, as knockout of this transcription factor results in loss of photoreceptors in mice. Here, using a mild light-induced retinal degeneration model, we show that the diminished MEF2D transcriptional activity in Mef2d+/- retina is further reduced under photostimulation-induced oxidative stress. Reactive oxygen species cause an aberrant redox modification on MEF2D, consequently inhibiting transcription of its downstream target, nuclear factor (erythroid-derived 2)-like 2 (NRF2). NRF2 is a master regulator of phase II antiinflammatory and antioxidant gene expression. In the Mef2d heterozygous mouse retina, NRF2 is not up-regulated to a normal degree in the face of light-induced oxidative stress, contributing to accelerated photoreceptor cell death. Furthermore, to combat this injury, we found that activation of the endogenous NRF2 pathway using proelectrophilic drugs rescues photoreceptors from photo-induced oxidative stress and may therefore represent a viable treatment for oxidative stress-induced photoreceptor degeneration, which is thought to contribute to some forms of retinitis pigmentosa and age-related macular degeneration.


Asunto(s)
Factor 2 Relacionado con NF-E2/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Degeneración Retiniana/etiología , Abietanos , Animales , Modelos Animales de Enfermedad , Haploinsuficiencia , Luz/efectos adversos , Factores de Transcripción MEF2/genética , Ratones , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
3.
Neurobiol Dis ; 127: 390-397, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30928642

RESUMEN

Tuberous sclerosis (TSC) is an autosomal dominant disorder caused by heterozygous mutations in the TSC1 or TSC2 gene. TSC is often associated with neurological, cognitive, and behavioral deficits. TSC patients also express co-morbidity with anxiety and mood disorders. The mechanism of pathogenesis in TSC is not entirely clear, but TSC-related neurological symptoms are accompanied by excessive glutamatergic activity and altered synaptic spine structures. To address whether extrasynaptic (e)NMDA-type glutamate receptor (NMDAR) antagonists, as opposed to antagonists that block physiological phasic synaptic activity, can ameliorate the synaptic and behavioral features of this disease, we utilized the Tsc2+/- mouse model of TSC to measure biochemical, electrophysiological, histological, and behavioral parameters in the mice. We found that antagonists that preferentially block tonic activity as found at eNMDARs, particularly the newer drug NitroSynapsin, provide biological and statistically significant improvement in Tsc2+/- phenotypes. Accompanying this improvement was correction of activity in the p38 MAPK-TSC-Rheb-mTORC1-S6K1 pathway. Deficits in hippocampal long-term potentiation (LTP), histological loss of synapses, and behavioral fear conditioning in Tsc2+/- mice were all improved after treatment with NitroSynapsin. Taken together, these results suggest that amelioration of excessive excitation, by limiting aberrant eNMDAR activity, may represent a novel treatment approach for TSC.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/uso terapéutico , Hipocampo/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Esclerosis Tuberosa/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Antagonistas de Aminoácidos Excitadores/farmacología , Hipocampo/metabolismo , Ratones , Ratones Noqueados , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo
4.
Mol Cell ; 39(2): 184-95, 2010 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-20670888

RESUMEN

X-linked inhibitor of apoptosis (XIAP) is a potent antagonist of caspase apoptotic activity. XIAP also functions as an E3 ubiquitin ligase, targeting caspases for degradation. However, molecular pathways controlling XIAP activities remain unclear. Here, we report that nitric oxide (NO) reacts with XIAP by S-nitrosylating its RING domain (forming SNO-XIAP), thereby inhibiting E3 ligase and antiapoptotic activity. NO-mediated neurotoxicity and caspase activation have been linked to several neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's diseases. We find significant SNO-XIAP formation in brains of patients with these diseases, implicating this reaction in the etiology of neuronal damage. Conversely, S-nitrosylation of caspases is known to inhibit apoptotic activity. Unexpectedly, we find that SNO-caspase transnitrosylates (transfers its NO group) to XIAP, forming SNO-XIAP, and thus promotes cell injury and death. These findings provide insights into the regulation of caspase activation in neurodegenerative disorders mediated, at least in part, by nitrosative stress.


Asunto(s)
Apoptosis , Caspasas/metabolismo , Óxido Nítrico/metabolismo , Procesamiento Proteico-Postraduccional , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Caspasas/genética , Activación Enzimática/genética , Humanos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Óxido Nítrico/genética , Estructura Terciaria de Proteína , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/genética
5.
Biochim Biophys Acta ; 1850(8): 1588-93, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25527866

RESUMEN

BACKGROUND: Nitric oxide (NO) is a pleiotropic messenger molecule. The multidimensional actions of NO species are, in part, mediated by their redox nature. Oxidative posttranslational modification of cysteine residues to regulate protein function, termed S-nitrosylation, constitutes a major form of redox-based signaling by NO. SCOPE OF REVIEW: S-Nitrosylation directly modifies a number of cytoplasmic and nuclear proteins in neurons. S-Nitrosylation modulates neuronal development by reaction with specific proteins, including the transcription factor MEF2. This review focuses on the impact of S-nitrosylation on neurogenesis and neuronal development. MAJOR CONCLUSIONS: Functional characterization of S-nitrosylated proteins that regulate neuronal development represents a rapidly emerging field. Recent studies reveal that S-nitrosylation-mediated redox signaling plays an important role in several biological processes essential for neuronal differentiation and maturation. GENERAL SIGNIFICANCE: Investigation of S-nitrosylation in the nervous system has elucidated new molecular and cellular mechanisms for neuronal development. S-Nitrosylated proteins in signaling networks modulate key events in brain development. Dysregulation of this redox-signaling pathway may contribute to neurodevelopmental disabilities such as autism spectrum disorder (ASD). Thus, further elucidation of the involvement of S-nitrosylation in brain development may offer potential therapeutic avenues for neurodevelopmental disorders. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.


Asunto(s)
Neurogénesis , Neuronas/metabolismo , Óxido Nítrico/metabolismo , Procesamiento Proteico-Postraduccional , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Cisteína/metabolismo , Humanos , Modelos Neurológicos , Neuronas/citología , Transducción de Señal , Factores de Transcripción/metabolismo
6.
Proc Natl Acad Sci U S A ; 110(27): E2518-27, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23776240

RESUMEN

Synaptic loss is the cardinal feature linking neuropathology to cognitive decline in Alzheimer's disease (AD). However, the mechanism of synaptic damage remains incompletely understood. Here, using FRET-based glutamate sensor imaging, we show that amyloid-ß peptide (Aß) engages α7 nicotinic acetylcholine receptors to induce release of astrocytic glutamate, which in turn activates extrasynaptic NMDA receptors (eNMDARs) on neurons. In hippocampal autapses, this eNMDAR activity is followed by reduction in evoked and miniature excitatory postsynaptic currents (mEPSCs). Decreased mEPSC frequency may reflect early synaptic injury because of concurrent eNMDAR-mediated NO production, tau phosphorylation, and caspase-3 activation, each of which is implicated in spine loss. In hippocampal slices, oligomeric Aß induces eNMDAR-mediated synaptic depression. In AD-transgenic mice compared with wild type, whole-cell recordings revealed excessive tonic eNMDAR activity accompanied by eNMDAR-sensitive loss of mEPSCs. Importantly, the improved NMDAR antagonist NitroMemantine, which selectively inhibits extrasynaptic over physiological synaptic NMDAR activity, protects synapses from Aß-induced damage both in vitro and in vivo.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Astrocitos/metabolismo , Ácido Glutámico/metabolismo , Inhibición Neural/fisiología , Fragmentos de Péptidos/toxicidad , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Astrocitos/patología , Técnicas de Cocultivo , Femenino , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Masculino , Ratones , Ratones Transgénicos , Ratas , Receptores Nicotínicos/metabolismo , Sinapsis/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7
7.
J Neurosci ; 34(13): 4640-53, 2014 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-24672010

RESUMEN

Mutations in the ataxia telangiectasia mutated (ATM) gene, which encodes a kinase critical for the normal DNA damage response, cause the neurodegenerative disorder ataxia-telangiectasia (AT). The substrates of ATM in the brain are poorly understood. Here we demonstrate that ATM phosphorylates and activates the transcription factor myocyte enhancer factor 2D (MEF2D), which plays a critical role in promoting survival of cerebellar granule cells. ATM associates with MEF2D after DNA damage and phosphorylates the transcription factor at four ATM consensus sites. Knockdown of endogenous MEF2D with a short-hairpin RNA (shRNA) increases sensitivity to etoposide-induced DNA damage and neuronal cell death. Interestingly, substitution of endogenous MEF2D with an shRNA-resistant phosphomimetic MEF2D mutant protects cerebellar granule cells from cell death after DNA damage, whereas an shRNA-resistant nonphosphorylatable MEF2D mutant does not. In vivo, cerebella in Mef2d knock-out mice manifest increased susceptibility to DNA damage. Together, our results show that MEF2D is a substrate for phosphorylation by ATM, thus promoting survival in response to DNA damage. Moreover, dysregulation of the ATM-MEF2D pathway may contribute to neurodegeneration in AT.


Asunto(s)
Daño del ADN/fisiología , Neuronas/fisiología , Animales , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/deficiencia , Proteínas de la Ataxia Telangiectasia Mutada/fisiología , Supervivencia Celular/fisiología , Células Cultivadas , Cerebelo/citología , Cerebelo/metabolismo , Inhibidores Enzimáticos/farmacología , Femenino , Células HEK293 , Humanos , Técnicas In Vitro , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Masculino , Ratones , Ratones Noqueados , Neuronas/citología , Neuronas/metabolismo , Fosforilación , Regiones Promotoras Genéticas/genética , Interferencia de ARN/fisiología , Superóxidos/metabolismo
8.
Neurobiol Dis ; 84: 99-108, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25796565

RESUMEN

Nitric oxide (NO) is a gasotransmitter that impacts fundamental aspects of neuronal function in large measure through S-nitrosylation, a redox reaction that occurs on regulatory cysteine thiol groups. For instance, S-nitrosylation regulates enzymatic activity of target proteins via inhibition of active site cysteine residues or via allosteric regulation of protein structure. During normal brain function, protein S-nitrosylation serves as an important cellular mechanism that modulates a diverse array of physiological processes, including transcriptional activity, synaptic plasticity, and neuronal survival. In contrast, emerging evidence suggests that aging and disease-linked environmental risk factors exacerbate nitrosative stress via excessive production of NO. Consequently, aberrant S-nitrosylation occurs and represents a common pathological feature that contributes to the onset and progression of multiple neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's diseases. In the current review, we highlight recent key findings on aberrant protein S-nitrosylation showing that this reaction triggers protein misfolding, mitochondrial dysfunction, transcriptional dysregulation, synaptic damage, and neuronal injury. Specifically, we discuss the pathological consequences of S-nitrosylated parkin, myocyte enhancer factor 2 (MEF2), dynamin-related protein 1 (Drp1), protein disulfide isomerase (PDI), X-linked inhibitor of apoptosis protein (XIAP), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) under neurodegenerative conditions. We also speculate that intervention to prevent these aberrant S-nitrosylation events may produce novel therapeutic agents to combat neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas/metabolismo , Proteína S/metabolismo , Animales , Humanos
9.
Proc Natl Acad Sci U S A ; 105(27): 9397-402, 2008 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-18599437

RESUMEN

Emerging evidence suggests that myocyte enhancer factor 2 (MEF2) transcription factors act as effectors of neurogenesis in the brain, with MEF2C the predominant isoform in developing cerebrocortex. Here, we show that conditional knockout of Mef2c in nestin-expressing neural stem/progenitor cells (NSCs) impaired neuronal differentiation in vivo, resulting in aberrant compaction and smaller somal size. NSC proliferation and survival were not affected. Conditional null mice surviving to adulthood manifested more immature electrophysiological network properties and severe behavioral deficits reminiscent of Rett syndrome, an autism-related disorder. Our data support a crucial role for MEF2C in programming early neuronal differentiation and proper distribution within the layers of the neocortex.


Asunto(s)
Diferenciación Celular , Factores Reguladores Miogénicos/metabolismo , Neuronas/citología , Células Madre/citología , Factores de Transcripción/metabolismo , Animales , Animales Recién Nacidos , Conducta , Cognición , Electrofisiología , Desarrollo Embrionario , Factores de Transcripción MEF2 , Ratones , Ratones Noqueados , Mitosis , Neocórtex/embriología , Neocórtex/patología , Neuronas/patología , Fenotipo
10.
J Neurosci ; 28(26): 6557-68, 2008 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-18579729

RESUMEN

Cell-based therapies require a reliable source of cells that can be easily grown, undergo directed differentiation, and remain viable after transplantation. Here, we generated stably transformed murine ES (embryonic stem) cells that express a constitutively active form of myocyte enhancer factor 2C (MEF2CA). MEF2C has been implicated as a calcium-dependent transcription factor that enhances survival and affects synapse formation of neurons as well as differentiation of cardiomyocytes. We now report that expression of MEF2CA, both in vitro and in vivo, under regulation of the nestin enhancer effectively produces "neuronal" progenitor cells that differentiate into a virtually pure population of neurons. Histological, electrophysiological, and behavioral analyses demonstrate that MEF2C-directed neuronal progenitor cells transplanted into a mouse model of cerebral ischemia can successfully differentiate into functioning neurons and ameliorate stroke-induced behavioral deficits.


Asunto(s)
Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/trasplante , Factores Reguladores Miogénicos/genética , Trasplante de Células Madre/métodos , Células Madre/metabolismo , Factores de Transcripción/genética , Animales , Apoptosis/genética , Isquemia Encefálica/terapia , Trasplante de Tejido Encefálico/métodos , Diferenciación Celular/fisiología , Línea Celular Transformada , Proliferación Celular , Supervivencia Celular/genética , Células Cultivadas , Células Madre Embrionarias/citología , Regulación de la Expresión Génica/genética , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/metabolismo , Factores de Transcripción MEF2 , Masculino , Ratones , Ratones Endogámicos C57BL , Degeneración Nerviosa/etiología , Degeneración Nerviosa/fisiopatología , Degeneración Nerviosa/terapia , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nestina , Neuronas/citología , Neuronas/metabolismo , Técnicas de Cultivo de Órganos , Células Madre/citología
11.
J Neurochem ; 104(4): 1116-31, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17995931

RESUMEN

Electrophilic compounds are a newly recognized class of redox-active neuroprotective compounds with electron deficient, electrophilic carbon centers that react with specific cysteine residues on targeted proteins via thiol (S-)alkylation. Although plants produce a variety of physiologically active electrophilic compounds, the detailed mechanism of action of these compounds remains unknown. Catechol ring-containing compounds have attracted attention because they become electrophilic quinones upon oxidation, although they are not themselves electrophilic. In this study, we focused on the neuroprotective effects of one such compound, carnosic acid (CA), found in the herb rosemary obtained from Rosmarinus officinalis. We found that CA activates the Keap1/Nrf2 transcriptional pathway by binding to specific Keap1 cysteine residues, thus protecting neurons from oxidative stress and excitotoxicity. In cerebrocortical cultures, CA-biotin accumulates in non-neuronal cells at low concentrations and in neurons at higher concentrations. We present evidence that both the neuronal and non-neuronal distribution of CA may contribute to its neuroprotective effect. Furthermore, CA translocates into the brain, increases the level of reduced glutathione in vivo, and protects the brain against middle cerebral artery ischemia/reperfusion, suggesting that CA may represent a new type of neuroprotective electrophilic compound.


Asunto(s)
Abietanos/farmacología , Catecoles/farmacología , Cisteína/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Neuronas/metabolismo , Extractos Vegetales/farmacología , Proteínas/metabolismo , Abietanos/química , Alquilación/efectos de los fármacos , Animales , Células COS , Catecoles/química , Bovinos , Células Cultivadas , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Péptidos y Proteínas de Señalización Intracelular , Proteína 1 Asociada A ECH Tipo Kelch , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Células PC12 , Extractos Vegetales/química , Ratas , Ratas Sprague-Dawley , Rosmarinus , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
12.
Invest Ophthalmol Vis Sci ; 58(9): 3741-3749, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28738418

RESUMEN

Purpose: Photoreceptor degeneration in the retina is a major cause of blindness in humans. Elucidating mechanisms of degenerative and neuroprotective pathways in photoreceptors should afford identification and development of therapeutic strategies. Methods: We used mouse genetic models and improved methods for retinal explant cultures. Retinas were enucleated from Mef2d+/+ and Mef2d-/- mice, stained for MEF2 proteins and outer nuclear layer thickness, and assayed for apoptotic cells. Chromatin immunoprecipitation (ChIP) assays revealed MEF2 binding, and RT-qPCR showed levels of transcription factors. We used AAV2 and electroporation to express genes in retinal explants and electroretinograms to assess photoreceptor functionality. Results: We identify a prosurvival MEF2D-PGC1α pathway that plays a neuroprotective role in photoreceptors. We demonstrate that Mef2d-/- mouse retinas manifest decreased expression of PGC1α and increased photoreceptor cell loss, resulting in the absence of light responses. Molecular repletion of PGC1α protects Mef2d-/- photoreceptors and preserves light responsivity. Conclusions: These results suggest that the MEF2-PGC1α cascade may represent a new therapeutic target for drugs designed to protect photoreceptors from developmental- and age-dependent loss.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Células Fotorreceptoras de Vertebrados/fisiología , Degeneración Retiniana/prevención & control , Envejecimiento , Animales , Apoptosis , Supervivencia Celular/fisiología , Dependovirus/genética , Modelos Animales de Enfermedad , Electroporación , Electrorretinografía , Femenino , Terapia Genética , Etiquetado Corte-Fin in Situ , Factores de Transcripción MEF2/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Cultivo de Órganos , Reacción en Cadena en Tiempo Real de la Polimerasa , Degeneración Retiniana/genética , Degeneración Retiniana/patología
13.
Genom Data ; 3: 24-27, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25485232

RESUMEN

[Briefly describe the contents of the Data in Brief article. Tell the reader the repository and reference number for the data in the abstract to.] The myocyte enhancer factor 2 (MEF2) family of transcription factors is highly expressed in the brain, and constitutes a key determinant of neuronal survival, differentiation, and synaptic plasticity. However, genome-wide transcriptional profiling of MEF2-regulated genes has not yet been fully elucidated, particularly at the neural stem cell stage. Here we report the results of microarray analysis comparing mRNAs isolated from human neural progenitor/stem cells (hNPCs) derived from embryonic stem cells expressing a control vector versus progenitors expressing a constitutively-active form of MEF2 (MEF2CA), which increases MEF2 activity. Microarray experiments were performed using the Illumina Human HT-12 V4.0 expression beadchip (GEO#: GSE57184). By comparing vector-control cells to MEF2CA cells, microarray analysis identified 1880 unique genes that were differentially expressed. Among these genes, 1121 genes were upregulated and 759 genes were down-regulated. Our results provide a valuable resource for identifying transcriptional targets of MEF2 in hNPCs.

14.
Brain Res Mol Brain Res ; 107(2): 89-96, 2002 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-12425938

RESUMEN

The silencer factor NRSF/REST has been reported to restrict expression to neurons of a variety of genes, including that encoding NMDA receptor subunit type 1 (NR1), by suppressing transcription in nonneuronal cells. However, we recently reported that in addition to the absence of NRSF/REST-binding activity, another neuron-specific mechanism is necessary for high level expression of the NR1 gene in neurons. In this study, we explored the mechanism of induction of NR1 promoter activity during neuronal differentiation of the P19 cell line. We identified a 27 base pair GC-rich region in the promoter as an important element responsible for induction of the NR1 gene after neuronal differentiation. We found that the ubiquitous transcription factors SP1 and MAZ bind to this GC-rich region. Surprisingly, the binding activities of SP1 and MAZ are not remarkably changed after neuronal differentiation. Mutations in the SP1 and MAZ sites impair binding of SP1 and MAZ proteins and also decrease NR1 promoter activity. These findings suggest that SP1 and MAZ mediate enhancement of NR1 promoter activity during neuronal differentiation despite the fact that their binding activity does not change.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Diferenciación Celular/genética , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Factor de Transcripción Sp1/genética , Factores de Transcripción/genética , Animales , Sitios de Unión/genética , Proteínas de Unión al ADN , Secuencia Rica en GC/genética , Ratones , Mutación/genética , Fosforilación , Regiones Promotoras Genéticas/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica/genética , Transcripción Genética/genética , Células Tumorales Cultivadas
15.
Mol Neurodegener ; 9: 48, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25394486

RESUMEN

Alzheimer's disease (AD) is a devastating disease characterized by synaptic and neuronal loss in the elderly. Compelling evidence suggests that soluble amyloid-ß peptide (Aß) oligomers induce synaptic loss in AD. Aß-induced synaptic dysfunction is dependent on overstimulation of N-methyl-D-aspartate receptors (NMDARs) resulting in aberrant activation of redox-mediated events as well as elevation of cytoplasmic Ca2+, which in turn triggers downstream pathways involving phospho-tau (p-tau), caspases, Cdk5/dynamin-related protein 1 (Drp1), calcineurin/PP2B, PP2A, Gsk-3ß, Fyn, cofilin, and CaMKII and causes endocytosis of AMPA receptors (AMPARs) as well as NMDARs. Dysfunction in these pathways leads to mitochondrial dysfunction, bioenergetic compromise and consequent synaptic dysfunction and loss, impaired long-term potentiation (LTP), and cognitive decline. Evidence also suggests that Aß may, at least in part, mediate these events by causing an aberrant rise in extrasynaptic glutamate levels by inhibiting glutamate uptake or triggering glutamate release from glial cells. Consequent extrasynaptic NMDAR (eNMDAR) overstimulation then results in synaptic dysfunction via the aforementioned pathways. Consistent with this model of Aß-induced synaptic loss, Aß synaptic toxicity can be partially ameliorated by the NMDAR antagonists (such as memantine and NitroMemantine). PSD-95, an important scaffolding protein that regulates synaptic distribution and activity of both NMDA and AMPA receptors, is also functionally disrupted by Aß. PSD-95 dysregulation is likely an important intermediate step in the pathological cascade of events caused by Aß. In summary, Aß-induced synaptic dysfunction is a complicated process involving multiple pathways, components and biological events, and their underlying mechanisms, albeit as yet incompletely understood, may offer hope for new therapeutic avenues.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/metabolismo , Sinapsis/metabolismo , Sinapsis/patología , Enfermedad de Alzheimer/patología , Animales , Humanos
16.
Cell Rep ; 8(1): 217-28, 2014 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-25001280

RESUMEN

Redox-mediated posttranslational modifications represent a molecular switch that controls major mechanisms of cell function. Nitric oxide (NO) can mediate redox reactions via S-nitrosylation, representing transfer of an NO group to a critical protein thiol. NO is known to modulate neurogenesis and neuronal survival in various brain regions in disparate neurodegenerative conditions. However, a unifying molecular mechanism linking these phenomena remains unknown. Here, we report that S-nitrosylation of myocyte enhancer factor 2 (MEF2) transcription factors acts as a redox switch to inhibit both neurogenesis and neuronal survival. Structure-based analysis reveals that MEF2 dimerization creates a pocket, facilitating S-nitrosylation at an evolutionally conserved cysteine residue in the DNA binding domain. S-Nitrosylation disrupts MEF2-DNA binding and transcriptional activity, leading to impaired neurogenesis and survival in vitro and in vivo. Our data define a molecular switch whereby redox-mediated posttranslational modification controls both neurogenesis and neurodegeneration via a single transcriptional signaling cascade.


Asunto(s)
Apoptosis , Factores de Transcripción MEF2/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Óxido Nítrico/metabolismo , Procesamiento Proteico-Postraduccional , Activación Transcripcional , Animales , Sitios de Unión , Células Cultivadas , ADN/metabolismo , Células HEK293 , Humanos , Factores de Transcripción MEF2/química , Factores de Transcripción MEF2/genética , Ratones , Células-Madre Neurales/citología , Oxidación-Reducción , Unión Proteica
17.
Neuron ; 78(4): 596-614, 2013 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-23719160

RESUMEN

S-Nitrosylation is a redox-mediated posttranslational modification that regulates protein function via covalent reaction of nitric oxide (NO)-related species with a cysteine thiol group on the target protein. Under physiological conditions, S-nitrosylation can be an important modulator of signal transduction pathways, akin to phosphorylation. However, with aging or environmental toxins that generate excessive NO, aberrant S-nitrosylation reactions can occur and affect protein misfolding, mitochondrial fragmentation, synaptic function, apoptosis or autophagy. Here, we discuss how aberrantly S-nitrosylated proteins (SNO-proteins) play a crucial role in the pathogenesis of neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. Insight into the pathophysiological role of aberrant S-nitrosylation pathways will enhance our understanding of molecular mechanisms leading to neurodegenerative diseases and point to potential therapeutic interventions.


Asunto(s)
Encéfalo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Animales , Encéfalo/patología , Humanos , Enfermedades Neurodegenerativas/patología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo
18.
Exp Neurol ; 236(2): 298-306, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22575597

RESUMEN

HIV/gp120 transgenic mice manifest neuropathological features similar to HIV-associated neurocognitive disorders (HAND) in humans, including astrogliosis, microglia activation, and decreased neuronal synapses. Here, proteomic screening of synaptosomes from HIV/gp120 transgenic mice was conducted to determine potential neuronal markers and drug targets associated with HAND. Synaptosomes from 13 month-old wild-type (wt) and HIV/gp120 transgenic mouse cortex were subjected to tandem mass tag (TMT) labeling and subsequent analysis using an LTQ-Orbitrap mass spectrometer in pulsed-Q dissociation (PQD) mode for tandem mass spectrometry (MS/MS). A total of 1301 proteins were identified in both wt and HIV/gp120 transgenic mice. Three of the most differentially-regulated proteins were validated by immunoblotting. To elucidate putative pathways associated with the proteomic profile, 107 proteins manifesting a ≥1.5 fold change in expression were analyzed using a bioinformatics pathway analysis tool. This analysis revealed direct or indirect involvement of the phosphotidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway, a well-known neuronal survival pathway. Immunoblots confirmed a lower phospho (p)Akt/Akt ratio in synaptosomes from HIV/gp120 transgenic animals compared to wt, suggesting that this neuroprotective pathway was inactivated in the HIV/gp120 transgenic brain. Based on this information, we then compared immunoblots of pAkt/Akt in the forebrains of these mice as well as in human postmortem brain. We observed a significant decrease in the pAkt/Akt ratio in synaptosomes and forebrain of HIV/gp120 transgenic compared to wt mice, and a similar decrease in human forebrain from HAND patients compared to neurologically unimpaired HIV+ and HIV- controls. Moreover, mechanistic insight into an additional pathway for decreased Akt activity in HIV/gp120 mouse brains and human HAND brains was shown to occur via S-nitrosylation of Akt protein, a posttranslational modification known to inhibit Akt activity and contribute to neuronal cell injury and death. Thus, MS proteomic profiling in the HIV/gp120 transgenic mouse predicted dysregulation of the PI3K/Akt pathway observed in human brains with HAND, providing evidence that this mouse is a useful disease model and that the Akt pathway may provide multiple drug targets for the treatment of HIV-related dementias.


Asunto(s)
Proteína gp120 de Envoltorio del VIH/antagonistas & inhibidores , Proteína gp120 de Envoltorio del VIH/genética , Infecciones por VIH/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Sinaptosomas/fisiología , Espectrometría de Masas en Tándem/métodos , Proteínas Reguladoras y Accesorias Virales/genética , Adulto , Anciano , Animales , Femenino , Proteína gp120 de Envoltorio del VIH/fisiología , Infecciones por VIH/genética , Infecciones por VIH/patología , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Vías Nerviosas/química , Vías Nerviosas/patología , Vías Nerviosas/virología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/virología , Fármacos Neuroprotectores/antagonistas & inhibidores , Fármacos Neuroprotectores/química , Sinaptosomas/química , Sinaptosomas/virología , Proteínas Reguladoras y Accesorias Virales/antagonistas & inhibidores , Proteínas Reguladoras y Accesorias Virales/química , Inactivación de Virus
19.
Nat Med ; 15(12): 1407-13, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19915593

RESUMEN

Huntington's disease is caused by an expanded CAG repeat in the gene encoding huntingtin (HTT), resulting in loss of striatal and cortical neurons. Given that the gene product is widely expressed, it remains unclear why neurons are selectively targeted. Here we show the relationship between synaptic and extrasynaptic activity, inclusion formation of mutant huntingtin protein (mtHtt) and neuronal survival. Synaptic N-methyl-D-aspartate-type glutamate receptor (NMDAR) activity induces mtHtt inclusions via a T complex-1 (TCP-1) ring complex (TRiC)-dependent mechanism, rendering neurons more resistant to mtHtt-mediated cell death. In contrast, stimulation of extrasynaptic NMDARs increases the vulnerability of mtHtt-containing neurons to cell death by impairing the neuroprotective cyclic AMP response element-binding protein (CREB)-peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) cascade and increasing the level of the small guanine nucleotide-binding protein Rhes, which is known to sumoylate and disaggregate mtHtt. Treatment of transgenic mice expressing a yeast artificial chromosome containing 128 CAG repeats (YAC128) with low-dose memantine blocks extrasynaptic (but not synaptic) NMDARs and ameliorates neuropathological and behavioral manifestations. By contrast, high-dose memantine, which blocks both extrasynaptic and synaptic NMDAR activity, decreases neuronal inclusions and worsens these outcomes. Our findings offer a rational therapeutic approach for protecting susceptible neurons in Huntington's disease.


Asunto(s)
Mutación , Proteínas del Tejido Nervioso/fisiología , Proteínas Nucleares/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/fisiología , Animales , Muerte Celular/fisiología , Cromosomas Artificiales de Levadura , Proteína Huntingtina , Memantina/farmacología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neuronas/efectos de los fármacos , Proteínas Nucleares/genética , Técnicas de Placa-Clamp , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Transactivadores/fisiología , Factores de Transcripción
20.
Cell Stem Cell ; 1(2): 230-6, 2007 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-18371353

RESUMEN

Impaired adult neurogenesis has been observed in several neurodegenerative diseases, including human immunodeficiency virus (HIV-1)-associated dementia (HAD). Here we report that the HIV-envelope glycoprotein gp120, which is associated with HAD pathogenesis, inhibits proliferation of adult neural progenitor cells (aNPCs) in vitro and in vivo in the dentate gyrus of the hippocampus of HIV/gp120-transgenic mice. We demonstrate that HIV/gp120 arrests cell-cycle progression of aNPCs at the G1 phase via a cascade consisting of p38 mitogen-activated protein kinase (MAPK) --> MAPK-activated protein kinase 2 (a cell-cycle checkpoint kinase) --> Cdc25B/C. Our findings define a molecular mechanism that compromises adult neurogenesis in this neurodegenerative disorder.


Asunto(s)
Proteína gp120 de Envoltorio del VIH/fisiología , Infecciones por VIH/patología , VIH-1/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuronas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Células Madre/fisiología , Complejo SIDA Demencia/metabolismo , Complejo SIDA Demencia/virología , Animales , Procesos de Crecimiento Celular/fisiología , Femenino , Fase G1/genética , Fase G1/fisiología , Proteína gp120 de Envoltorio del VIH/genética , Infecciones por VIH/enzimología , Infecciones por VIH/virología , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Transgénicos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/virología , Neuronas/citología , Neuronas/enzimología , Ratas , Fosfatasas cdc25/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA