Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Biomacromolecules ; 23(10): 4254-4267, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36136959

RESUMEN

This work presents a polysaccharide and protein-based two-component hybrid hydrogel integrating the cell-adhesive gelatin-tyramine (G-Tyr) and nonadhesive hyaluronic acid-tyramine (HA-Tyr) through enzyme-mediated oxidative coupling reaction. The resulting HA-Tyr/G-Tyr hydrogel reflects the precise chemical and mechanical features of the cancer extracellular matrix and is able to tune cancer cell adhesion upon switching the component ratio. The cells form quasi-spheroids on HA-Tyr rich hydrogels, while they tend to form an invasive monolayer culture on G-Tyr rich hydrogels. The metastatic genotype of colorectal adenocarcinoma cells (HT-29) increases on G-Tyr rich hydrogels which is driven by the material's adhesive property, and additionally confirmed by the suppressed gene expressions of apoptosis and autophagy. On the other hand, HA-Tyr rich hydrogels lead the cells to necrotic death via oxidative stress in quasi-spheroids. This work demonstrates the ideality of HA-Tyr/G-Tyr to modulate cancer cell adhesion, which also has potential in preventing primary metastasis after onco-surgery, biomaterials-based cancer research, and drug testing.


Asunto(s)
Hidrogeles , Neoplasias , Adhesivos , Materiales Biocompatibles , Gelatina , Humanos , Ácido Hialurónico/química , Hidrogeles/química , Hidrogeles/farmacología , Tiramina/química
2.
Prenat Diagn ; 41(1): 89-99, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33045764

RESUMEN

OBJECTIVE: We examined whether peptide amphiphiles functionalised with adhesive, migratory or regenerative sequences could be combined with amniotic fluid (AF) to form plugs that repair fetal membrane (FM) defects after trauma and co-culture with connexin 43 (Cx43) antisense. METHODS: We assessed interactions between peptide amphiphiles and AF and examined the plugs in FM defects after trauma and co-culture with the Cx43antisense. RESULTS: Confocal microscopy confirmed directed self-assembly of peptide amphiphiles with AF to form a plug within minutes, with good mechanical properties. SEM of the plug revealed a multi-layered, nanofibrous network that sealed the FM defect after trauma. Co-culture of the FM defect with Cx43 antisense and plug increased collagen levels but reduced GAG. Culture of the FM defect with peptide amphiphiles incorporating regenerative sequences for 5 days, increased F-actin and nuclear cell contraction, migration and polarization of collagen fibers across the FM defect when compared to control specimens with minimal repair. CONCLUSIONS: Whilst the nanoarchitecture revealed promising conditions to seal iatrogenic FM defects, the peptide amphiphiles need to be designed to maximize repair mechanisms and promote structural compliance with high mechanical tolerance that maintains tissue remodeling with Cx43 antisense for future treatment.


Asunto(s)
Elementos sin Sentido (Genética)/administración & dosificación , Conexina 43/antagonistas & inhibidores , Membranas Extraembrionarias/lesiones , Péptidos/administración & dosificación , Cicatrización de Heridas/efectos de los fármacos , Adulto , Líquido Amniótico/química , Técnicas de Cocultivo , Evaluación Preclínica de Medicamentos , Membranas Extraembrionarias/ultraestructura , Femenino , Fetoscopía/efectos adversos , Humanos , Péptidos/química , Embarazo
3.
Chem Soc Rev ; 47(10): 3721-3736, 2018 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-29697727

RESUMEN

Nature is enriched with a wide variety of complex, synergistic, and highly functional protein-based multicomponent assemblies. As such, nature has served as a source of inspiration for using multicomponent self-assembly as a platform to create highly ordered, complex, and dynamic protein and peptide-based nanostructures. Such an assembly system relies on the initial interaction of distinct individual building blocks leading to the formation of a complex that subsequently assembles into supramolecular architectures. This approach not only serves as a powerful platform for gaining insight into how proteins co-assemble in nature but also offers huge opportunities to harness new properties not inherent in the individual building blocks. In the past decades, various multicomponent self-assembly strategies have been used to extract synergistic properties from proteins and peptides. This review highlights the updates in the field of multicomponent self-assembly of proteins and peptides and summarizes various strategies, including covalent conjugation, ligand-receptor interactions, templated/directed assembly and non-specific co-assembly, for driving the self-assembly of multiple proteins and peptide-based building blocks into functional materials. In particular, we focus on peptide- or protein-containing multicomponent systems that, upon self-assembly, enable the emergence of new properties or phenomena. The ultimate goal of this review is to highlight the importance of multicomponent self-assembly in protein and peptide engineering, and to advocate its growth in the fields of materials science and nanotechnology.


Asunto(s)
Péptidos/síntesis química , Proteínas/síntesis química , Ciencia de los Materiales , Nanoestructuras/química , Nanotecnología , Péptidos/química , Ingeniería de Proteínas , Proteínas/química
4.
Chem Soc Rev ; 45(15): 4226-51, 2016 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-27241027

RESUMEN

This review explores supramolecular gels as materials for environmental remediation. These soft materials are formed by self-assembling low-molecular-weight building blocks, which can be programmed with molecular-scale information by simple organic synthesis. The resulting gels often have nanoscale 'solid-like' networks which are sample-spanning within a 'liquid-like' solvent phase. There is intimate contact between the solvent and the gel nanostructure, which has a very high effective surface area as a result of its dimensions. As such, these materials have the ability to bring a solid-like phase into contact with liquids in an environmental setting. Such materials can therefore remediate unwanted pollutants from the environment including: immobilisation of oil spills, removal of dyes, extraction of heavy metals or toxic anions, and the detection or removal of chemical weapons. Controlling the interactions between the gel nanofibres and pollutants can lead to selective uptake and extraction. Furthermore, if suitably designed, such materials can be recyclable and environmentally benign, while the responsive and tunable nature of the self-assembled network offers significant advantages over other materials solutions to problems caused by pollution in an environmental setting.


Asunto(s)
Contaminantes Ambientales/aislamiento & purificación , Restauración y Remediación Ambiental/métodos , Geles/química , Nanoestructuras/química , Sustancias para la Guerra Química/análisis , Colorantes/química , Colorantes/aislamiento & purificación , Contaminantes Ambientales/química , Metales Pesados/química , Metales Pesados/aislamiento & purificación , Peso Molecular , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación
5.
Angew Chem Int Ed Engl ; 55(1): 183-7, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26549625

RESUMEN

A hydrogel based on 1,3:2,4-dibenzylidenesorbitol (DBS), modified with acyl hydrazides which extracts gold/silver salts from model waste is reported, with preferential uptake of precious heavy metals over other common metals. Reduction of gold/silver salts occurs spontaneously in the gel to yield metal nanoparticles located on the gel nanofibers. High nanoparticle loadings can be achieved, endowing the gel with electrochemical activity. These hybrid gels exhibit higher conductances than gels doped with carbon nanotubes, and can be used to modify electrode surfaces, enhancing electrocatalysis. We reason this simple, industrially and environmentally relevant approach to conducting materials is of considerable significance.

6.
Soft Matter ; 11(24): 4768-87, 2015 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-26016799

RESUMEN

Dibenzylidene-D-sorbitol (DBS) has been a well-known low-molecular-weight gelator of organic solvents for over 100 years. As such, it constitutes a very early example of a supramolecular gel--a research field which has recently developed into one of intense interest. The ability of DBS to self-assemble into sample-spanning networks in numerous solvents is predicated upon its 'butterfly-like' structure, whereby the benzylidene groups constitute the 'wings' and the sorbitol backbone the 'body'--the two parts representing the molecular recognition motifs underpinning its gelation mechanism, with the nature of solvent playing a key role in controlling the precise assembly mode. This gelator has found widespread applications in areas as diverse as personal care products and polymer nucleation/clarification, and has considerable potential in applications such as dental composites, energy technology and liquid crystalline materials. Some derivatives of DBS have also been reported which offer the potential to expand the scope and range of applications of this family of gelators and endow the nansocale network with additional functionality. This review aims to explain current trends in DBS research, and provide insight into how by combining a long history of application, with modern methods of derivatisation and analysis, the future for this family of gelators is bright, with an increasing number of high-tech applications, from environmental remediation to tissue engineering, being within reach.

7.
Angew Chem Int Ed Engl ; 53(46): 12461-5, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25146876

RESUMEN

A simple approach to a patterned multidomain gel is reported, combining a pH-responsive low-molecular-weight gelator (LMWG) and a photoinducible polymer gelator (PG). Using SEM (scanning electron microscopy), NMR spectroscopy, and CD, we demonstrate that self-assembly of the LMWG network occurs in the presence of the PG network, but that the PG has an influence on LMWG assembly kinetics and morphology. The application of a mask during photoirradiation allows patterning of the PG network; we define the resulting system as a "multidomain gel"-one domain consists of a LMWG, whereas the patterned region contains both LMWG and PG networks. The different domains have different properties with regard to diffusion of small molecules, and both gelator networks can control diffusion rates to give systems capable of controlled release. Such materials may have future applications in multikinetic control of drug release, or as patterned scaffolds for directed tissue engineering.


Asunto(s)
Hidrogeles/química , Nanoestructuras/química , Difusión , Concentración de Iones de Hidrógeno , Cinética , Nanoestructuras/ultraestructura , Procesos Fotoquímicos , Polímeros/química
8.
Adv Healthc Mater ; 13(17): e2301941, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38471128

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense and stiff extracellular matrix (ECM) associated with tumor progression and therapy resistance. To further the understanding of how stiffening of the tumor microenvironment (TME) contributes to aggressiveness, a three-dimensional (3D) self-assembling hydrogel disease model is developed based on peptide amphiphiles (PAs, PA-E3Y) designed to tailor stiffness. The model displays nanofibrous architectures reminiscent of native TME and enables the study of the invasive behavior of PDAC cells. Enhanced tuneability of stiffness is demonstrated by interacting thermally annealed aqueous solutions of PA-E3Y (PA-E3Yh) with divalent cations to create hydrogels with mechanical properties and ultrastructure similar to native tumor ECM. It is shown that stiffening of PA-E3Yh hydrogels to levels found in PDAC induces ECM deposition, promotes epithelial-to-mesenchymal transition (EMT), enriches CD133+/CXCR4+ cancer stem cells (CSCs), and subsequently enhances drug resistance. The findings reveal how a stiff 3D environment renders PDAC cells more aggressive and therefore more faithfully recapitulates in vivo tumors.


Asunto(s)
Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Matriz Extracelular , Hidrogeles , Células Madre Neoplásicas , Neoplasias Pancreáticas , Microambiente Tumoral , Humanos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Hidrogeles/química , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Matriz Extracelular/metabolismo , Microambiente Tumoral/efectos de los fármacos , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Péptidos/química , Péptidos/farmacología , Fenotipo , Receptores CXCR4/metabolismo
9.
Acta Biomater ; 171: 223-238, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37793600

RESUMEN

Organoids are an emerging technology with great potential in human disease modelling, drug development, diagnosis, tissue engineering, and regenerative medicine. Organoids as 3D-tissue culture systems have gained special attention in the past decades due to their ability to faithfully recapitulate the complexity of organ-specific tissues. Despite considerable successes in culturing physiologically relevant organoids, their real-life applications are currently limited by challenges such as scarcity of an appropriate biomimetic matrix. Peptide amphiphiles (PAs) due to their well-defined chemistry, tunable bioactivity, and extracellular matrix (ECM)-like nanofibrous architecture represent an attractive material scaffold for organoids development. Using cerebral organoids (COs) as exemplar, we demonstrate the possibility to create bio-instructive hydrogels with tunable stiffness ranging from 0.69 kPa to 2.24 kPa to culture and induce COs growth. We used orthogonal chemistry involving oxidative coupling and supramolecular interactions to create two-component hydrogels integrating the bio-instructive activity and ECM-like nanofibrous architecture of a laminin-mimetic PAs (IKVAV-PA) and tunable crosslinking density of hyaluronic acid functionalized with tyramine (HA-Try). Multi-omics technology including transcriptomics, proteomics, and metabolomics reveals the induction and growth of COs in soft HA-Tyr hydrogels containing PA-IKVAV such that the COs display morphology and biomolecular signatures similar to those grown in Matrigel scaffolds. Our materials hold great promise as a safe synthetic ECM for COs induction and growth. Our approach represents a well-defined alternative to animal-derived matrices for the culture of COs and might expand the applicability of organoids in basic and clinical research. STATEMENT OF SIGNIFICANCE: Synthetic bio-instructive materials which display tissue-specific functionality and nanoscale architecture of the native extracellular matrix are attractive matrices for organoids development. These synthetic matrices are chemically defined and animal-free compared to current gold standard matrices such as Matrigel. Here, we developed hydrogel matrices with tunable stiffness, which incorporate laminin-mimetic peptide amphiphiles to grow and expand cerebral organoids. Using multi-omics tools, the present study provides exciting data on the effects of neuro-inductive cues on the biomolecular profiles of brain organoids.


Asunto(s)
Hidrogeles , Laminina , Animales , Humanos , Hidrogeles/farmacología , Hidrogeles/química , Multiómica , Organoides , Péptidos/farmacología
10.
Adv Healthc Mater ; 12(20): e2203044, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37014809

RESUMEN

3D printing offers an exciting opportunity to fabricate biological constructs with specific geometries, clinically relevant sizes, and functions for biomedical applications. However, successful application of 3D printing is limited by the narrow range of printable and bio-instructive materials. Multicomponent hydrogel bioinks present unique opportunities to create bio-instructive materials able to display high structural fidelity and fulfill the mechanical and functional requirements for in situ tissue engineering. Herein, 3D printable and perfusable multicomponent hydrogel constructs with high elasticity, self-recovery properties, excellent hydrodynamic performance, and improved bioactivity are reported. The materials' design strategy integrates fast gelation kinetics of sodium alginate (Alg), in situ crosslinking of tyramine-modified hyaluronic acid (HAT), and temperature-dependent self-assembly and biological functions of decellularized aorta (dAECM). Using extrusion-based printing approach, the capability to print the multicomponent hydrogel bioinks with high precision into a well-defined vascular constructs able to withstand flow and repetitive cyclic compressive loading, is demonstrated. Both in vitro and pre-clinical models are used to show the pro-angiogenic and anti-inflammatory properties of the multicomponent vascular constructs. This study presents a strategy to create new bioink whose functional properties are greater than the sum of their components and with potential applications in vascular tissue engineering and regenerative medicine.


Asunto(s)
Bioimpresión , Ingeniería de Tejidos , Impresión Tridimensional , Matriz Extracelular/química , Medicina Regenerativa , Hidrogeles/química , Andamios del Tejido/química
11.
Mol Omics ; 18(7): 591-615, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35723504

RESUMEN

Recent research effort in biomaterial development has largely focused on engineering bio-instructive materials to stimulate specific cell signaling. Assessing the biological performance of these materials using time-consuming and trial-and-error traditional low-throughput screening techniques remains a critical challenge in the field. In contrast, the use of increasingly sophisticated omics technologies to facilitate high-throughput screening of unbiased global understanding of cell-biomaterial interactions at gene, epigenetic, mRNA, protein, metabolite, and lipid levels holds great potential to predict the therapeutic outcome of biomaterials with specific properties. In this review, we highlight the potential use of omics technologies - namely transcriptomics, proteomics, metabolomics and lipidomics - in biomaterial design and deciphering of the fundamental cell behaviors (e.g., adhesion, migration, differentiation) in response to cell-biomaterial interactions. Moreover, the potential challenges and prospects of high-throughput analysis platforms are discussed rationally, providing an insight into the developing field and its use in biomaterials science.


Asunto(s)
Materiales Biocompatibles , Ensayos Analíticos de Alto Rendimiento , Metabolómica/métodos , Proteínas , Proteómica/métodos
12.
Adv Biol (Weinh) ; 6(6): e2101317, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35347890

RESUMEN

Extracellular nanovesicles, particularly exosomes, can deliver their diverse bioactive biomolecular content, including miRNAs, proteins, and lipids, thus providing a context for investigating the capability of exosomes to induce stem cells toward lineage-specific cells and tissue regeneration. In this study, it is demonstrated that rat subventricular zone neural stem cell-derived exosomes (rSVZ-NSCExo) can control neural-lineage specification of human mesenchymal stem cells (hMSCs). Microarray analysis shows that the miRNA content of rSVZ-NSCExo is a faithful representation of rSVZ tissue. Through immunocytochemistry, gene expression, and multi-omics analyses, the capability to use rSVZ-NSCExo to induce hMSCs into a neuroglial or neural stem cell phenotype and genotype in a temporal and dose-dependent manner via multiple signaling pathways is demonstrated. The current study presents a new and innovative strategy to modulate hMSCs fate by harnessing the molecular content of exosomes, thus suggesting future opportunities for rSVZ-NSCExo in nerve tissue regeneration.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Células-Madre Neurales , Animales , Diferenciación Celular , Exosomas/química , Humanos , Regeneración Nerviosa , Ratas
13.
Regen Biomater ; 8(5): rbab040, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34386265

RESUMEN

Hydrogel wound dressings can play critical roles in wound healing protecting the wound from trauma or contamination and providing an ideal environment to support the growth of endogenous cells and promote wound closure. This work presents a self-assembling hydrogel dressing that can assist the wound repair process mimicking the hierarchical structure of skin extracellular matrix. To this aim, the co-assembly behaviour of a carboxylated variant of xyloglucan (CXG) with a peptide amphiphile (PA-H3) has been investigated to generate hierarchical constructs with tuneable molecular composition, structure, and properties. Transmission electron microscopy and circular dichroism at a low concentration shows that CXG and PA-H3 co-assemble into nanofibres by hydrophobic and electrostatic interactions and further aggregate into nanofibre bundles and networks. At a higher concentration, CXG and PA-H3 yield hydrogels that have been characterized for their morphology by scanning electron microscopy and for the mechanical properties by small-amplitude oscillatory shear rheological measurements and compression tests at different CXG/PA-H3 ratios. A preliminary biological evaluation has been carried out both in vitro with HaCat cells and in vivo in a mouse model.

14.
Sci Rep ; 11(1): 16975, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34408164

RESUMEN

The wound healing capacity of the fetal membranes after spontaneous or iatrogenic membrane rupture is unclear. We examined the healing mechanisms in amniotic membrane (AM) defects after trauma. Traumatised human AM defects were cultured for 4 days. Markers for nuclear (DAPI), cell type (vimentin, αSMA) and healing (Cx43, TGFß1, collagen) were examined by immunofluorescence (IMF) confocal microscopy, Second Harmonic Generation (SHG) imaging and RT-qPCR. After trauma, AMCs and myofibroblasts migrated to the AM wound edge. Within four days, αSMA expressing myofibroblasts showed abundant Cx43 localized in the cytoplasmic processes. The highly contractile spindle-shaped myofibroblasts were present in the defect site and released collagen. In contrast, AMCs expressed vimentin and formed Cx43 plaques between cells found in the outer edges of the wound. Whilst AMCs were absent in the defect site, αSMA expressing myofibroblasts continued to elongate and polarize the collagen fibres. Both TGFß1 and Cx43 gene expression were significantly increased after trauma. Cx43 has differential effects on AM cell populations that increase cellularity, contraction and potentially migration to the wound edge resulting in collagen polarisation in the AM defect site. Establishing how Cx43 regulates AM cell function could be an approach to repair defects in the membranes after trauma.


Asunto(s)
Amnios/metabolismo , Colágeno/metabolismo , Conexina 43/metabolismo , Miofibroblastos/metabolismo , Membranas Extraembrionarias/metabolismo , Femenino , Rotura Prematura de Membranas Fetales/metabolismo , Humanos , Embarazo , Vimentina/metabolismo , Cicatrización de Heridas/fisiología
15.
Biomater Sci ; 9(24): 8270-8284, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34766605

RESUMEN

Self-assembling bio-instructive materials that can provide a biomimetic tissue microenvironment with the capability to regulate cellular behaviors represent an attractive platform in regenerative medicine. Herein, we develop a hybrid neuro-instructive hydrogel that combines the properties of a photo-crosslinkable gelatin methacrylate (GelMA) and self-assembling peptide amphiphiles (PAs) bearing a laminin-derived neuro-inductive epitope (PA-GSR). Electrostatic interaction and ultraviolet light crosslinking mechanisms were combined to create dual-crosslinked hybrid hydrogels with tunable stiffness. Spectroscopic, microscopic and theoretical techniques show that the cationic PA-GSR(+) electrostatically co-assembles with the negatively charged GelMA to create weak hydrogels with hierarchically ordered microstructures, which were further photo-crosslinked to create mechanically robust hydrogels. Dynamic oscillatory rheology and micromechanical testing show that photo-crosslinking of the co-assembled GelMA and PA-GSR(+) hydrogel results in robust hydrogels displaying improved stiffness. Gene expression analysis was used to show that GelMA/PA-GSR(+) hydrogels can induce human mesenchymal stem cells (hMSCs) into neural-lineage cells and supports neural-lineage specification of neuroblast-like cells (SH-SY5Y) in a growth-factor-free manner. Also, metabolomics analysis suggests that the hydrogel alters the metabolite profiles in the cells by affecting multiple molecular pathways. This work highlights a new approach for the design of PA-based hybrid hydrogels with robust mechanical properties and biological functionalities for nerve tissue regeneration.


Asunto(s)
Gelatina , Hidrogeles , Biomimética , Humanos , Laminina , Péptidos , Ingeniería de Tejidos
16.
Biofabrication ; 13(3)2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33561850

RESUMEN

Self-assembling bioinks offer the possibility to biofabricate with molecular precision, hierarchical control, and biofunctionality. For this to become a reality with widespread impact, it is essential to engineer these ink systems ensuring reproducibility and providing suitable standardization. We have reported a self-assembling bioink based on disorder-to-order transitions of an elastin-like recombinamer (ELR) to co-assemble with graphene oxide (GO). Here, we establish reproducible processes, optimize printing parameters for its use as a bioink, describe new advantages that the self-assembling bioink can provide, and demonstrate how to fabricate novel structures with physiological relevance. We fabricate capillary-like structures with resolutions down to ∼10µm in diameter and ∼2µm thick tube walls and use both experimental and finite element analysis to characterize the printing conditions, underlying interfacial diffusion-reaction mechanism of assembly, printing fidelity, and material porosity and permeability. We demonstrate the capacity to modulate the pore size and tune the permeability of the resulting structures with and without human umbilical vascular endothelial cells. Finally, the potential of the ELR-GO bioink to enable supramolecular fabrication of biomimetic structures was demonstrated by printing tubes exhibiting walls with progressively different structure and permeability.


Asunto(s)
Bioimpresión , Células Endoteliales , Humanos , Tinta , Permeabilidad , Impresión Tridimensional , Reproducibilidad de los Resultados , Andamios del Tejido
17.
ACS Nano ; 15(7): 11202-11217, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34180656

RESUMEN

Synthetic nanostructured materials incorporating both organic and inorganic components offer a unique, powerful, and versatile class of materials for widespread applications due to the distinct, yet complementary, nature of the intrinsic properties of the different constituents. We report a supramolecular system based on synthetic nanoclay (Laponite, Lap) and peptide amphiphiles (PAs, PAH3) rationally designed to coassemble into nanostructured hydrogels with high structural integrity and a spectrum of bioactivities. Spectroscopic and scattering techniques and molecular dynamic simulation approaches were harnessed to confirm that PAH3 nanofibers electrostatically adsorbed and conformed to the surface of Lap nanodisks. Electron and atomic force microscopies also confirmed an increase in diameter and surface area of PAH3 nanofibers after coassembly with Lap. Dynamic oscillatory rheology revealed that the coassembled PAH3-Lap hydrogels displayed high stiffness and robust self-healing behavior while gas adsorption analysis confirmed a hierarchical and heterogeneous porosity. Furthermore, this distinctive structure within the three-dimensional (3D) matrix provided spatial confinement for the nucleation and hierarchical organization of high-aspect ratio hydroxyapatite nanorods into well-defined spherical clusters within the 3D matrix. Applicability of the organic-inorganic PAH3-Lap hydrogels was assessed in vitro using human bone marrow-derived stromal cells (hBMSCs) and ex vivo using a chick chorioallantoic membrane (CAM) assay. The results demonstrated that the organic-inorganic PAH3-Lap hydrogels promote human skeletal cell proliferation and, upon mineralization, integrate with the CAM, are infiltrated by blood vessels, stimulate extracellular matrix production, and facilitate extensive mineral deposition relative to the controls.


Asunto(s)
Células Madre Mesenquimatosas , Nanofibras , Humanos , Hidrogeles/química , Durapatita/química , Nanofibras/química , Reología
18.
Biomater Sci ; 8(3): 846-857, 2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-31793933

RESUMEN

Covalent co-assembly holds great promise for the fabrication of hydrogels with controllable nanostructure, versatile chemical composition, and enhanced mechanical properties given its relative simplicity, high efficiency, and bond stability. This report describes our approach to designing functional multicomponent hydrogels based on photo-induced chemical interactions between an acrylamide-functionalized resilin-like polypeptide (RLP) and a peptide amphiphile (PA). Circular dichroism (CD) spectroscopy, electron microscopy, and amplitude sweep rheology were used to demonstrate that the co-assembled hydrogel systems acquired distinct structural conformations, tunable nanostructures, and enhanced elasticity in a PA concentration-dependent manner. We envisage the use of these materials in numerous biomedical applications such as controlled drug release systems, microfluidic devices, and scaffolds for tissue engineering.


Asunto(s)
Proteínas de Insectos/química , Nanoestructuras/química , Péptidos/química , Fenómenos Biomecánicos , Dicroismo Circular , Elasticidad , Hidrogeles/química , Reología
19.
Acta Biomater ; 109: 82-94, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32311533

RESUMEN

The native extracellular matrix (ECM) is a complex gel-like system with a broad range of structural features and biomolecular signals. Hydrogel platforms that can recapitulate the complexity and signaling properties of this ECM would have enormous impact in fields ranging from tissue engineering to drug discovery. Here, we report on the design, synthesis, and proof-of-concept validation of a microporous and nanofibrous hydrogel exhibiting multiple bioactive epitopes designed to recreate key features of the bone ECM. The material platform integrates self-assembly with orthogonal enzymatic cross-linking to create a supramolecular environment comprising hyaluronic acid modified with tyramine (HA-Tyr) and peptides amphiphiles (PAs) designed to promote cell adhesion (RGDS-PA), osteogenesis (Osteo-PA), and angiogenesis (Angio-PA). Through individual and co-cultures of human adipose derived mesenchymal stem cells (hAMSCs) and human umbilical vascular endothelial cells (HUVECs), we confirmed the capacity of the HA-Tyr/RGDS-PA/Osteo-PA/Angio-PA hydrogel to promote cell adhesion as well as osteogenic and angiogenic differentiation in both 2D and 3D setups. Furthermore, using immunofluorescent staining and reverse transcription-quantitative polymerase chain reaction (RT-qPCR), we demonstrated co-differentiation and organization of hAMSCs and HUVECs into 3D aggregates resembling vascularized bone-like constructs. STATEMENT OF SIGNIFICANCE: This body of work presents a new approach to develop more complex, yet functional, in vitro environments for cell culture while enabling a high level of control, tuneability, and reproducibility. The multicomponent self-assembling bioactive 2D and 3D hydrogels with nanofibrous architecture designed to recreate key molecular and macromolecular features of the native bone ECM and promote both osteogenesis and angiogenesis. The materials induce endothelial cells towards large vascular lumens and MSCs into bone cells on/within the same platform and form vascularized-bone like construct in vitro. This strategy looks encouraging for lifelike bone tissue engineering in vitro and bone tissue regeneration in vivo.


Asunto(s)
Materiales Biomiméticos/química , Técnicas de Cocultivo/métodos , Hidrogeles/química , Neovascularización Fisiológica/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Tejido Adiposo/citología , Materiales Biomiméticos/síntesis química , Adhesión Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Módulo de Elasticidad , Matriz Extracelular/química , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ácido Hialurónico/química , Hidrogeles/síntesis química , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Péptidos/síntesis química , Péptidos/química , Porosidad , Prueba de Estudio Conceptual , Tiramina/química
20.
Nat Commun ; 11(1): 1182, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32132534

RESUMEN

Supramolecular chemistry offers an exciting opportunity to assemble materials with molecular precision. However, there remains an unmet need to turn molecular self-assembly into functional materials and devices. Harnessing the inherent properties of both disordered proteins and graphene oxide (GO), we report a disordered protein-GO co-assembling system that through a diffusion-reaction process and disorder-to-order transitions generates hierarchically organized materials that exhibit high stability and access to non-equilibrium on demand. We use experimental approaches and molecular dynamics simulations to describe the underlying molecular mechanism of formation and establish key rules for its design and regulation. Through rapid prototyping techniques, we demonstrate the system's capacity to be controlled with spatio-temporal precision into well-defined capillary-like fluidic microstructures with a high level of biocompatibility and, importantly, the capacity to withstand flow. Our study presents an innovative approach to transform rational supramolecular design into functional engineering with potential widespread use in microfluidic systems and organ-on-a-chip platforms.


Asunto(s)
Bioimpresión/métodos , Diseño de Equipo/métodos , Grafito/química , Dispositivos Laboratorio en un Chip , Proteína Elk-1 con Dominio ets/química , Animales , Técnicas de Cultivo de Célula/métodos , Línea Celular , Embrión de Pollo , Membrana Corioalantoides , Células Endoteliales de la Vena Umbilical Humana , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Impresión Tridimensional , Multimerización de Proteína , Estructura Cuaternaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA