RESUMEN
Exposure to airborne microorganisms has been linked to the development of health detriments, particularly in children. Microbial pollution can constitute a relevant health concern indoors, where levels of airborne microorganisms may be specially increased. This work aimed to characterize the airborne bacterial levels, and fungal concentration and diversity to which twins are exposed in their bedrooms (n = 30) during the first year of life. Bacterial and fungal levels varied widely across the studied bedrooms, with 10% of the rooms presenting values exceeding the national limit for both indoor bacterial and fungal counts. Cladosporium was the predominant genera, but Penicillium, Aspergillus, Alternaria, Trichoderma and Chrysonilia were also identified in the samples collected. In addition, two toxicogenic species, A. flavus and T. viride, were identified at counts that exceeded the established limit (12 CFU/m3) in 3 and 7% of the bedrooms surveyed, respectively. Based on indoor-to-outdoor concentration ratios, outdoor air seemed to be the main contributor to the total load of fungi found indoors, while airborne bacteria appeared to be mainly linked to indoor sources. Higher indoor nitrogen dioxide levels were negatively correlated with indoor fungi concentrations, whereas particulate matter and volatile organic compounds concentrations were associated with an increase in fungal prevalence. In addition, rooms with small carpets or located near outdoor agriculture sources presented significantly greater total fungal concentrations. Multiple linear regression models showed that outdoor levels were the single significant predictor identified, explaining 38.6 and 53.6% of the Cladosporium sp. and total fungi counts, respectively. The results also suggest the existence of additional factors contributing to airborne biologicals load in infants' bedrooms that deserve further investigation. Findings stress the need for investigating the existence of declared interactive effects between chemical and biological air pollutants to accurately understand the health risk that the assessed levels can represent to infants.
Asunto(s)
Microbiología del Aire , Contaminación del Aire Interior , Contaminación del Aire Interior/análisis , Bacterias , Niño , Monitoreo del Ambiente/métodos , Hongos , HumanosRESUMEN
Exposure to air pollution in early years can exacerbate the risk of noncommunicable diseases throughout childhood and the entire life course. This study aimed to assess temperature, relative humidity (RH), carbon dioxide (CO2) and monoxide (CO), particulate matter (PM2.5, PM10), ultrafine particles, nitrogen dioxide (NO2), ozone (O3), formaldehyde, acetaldehyde and volatile organic compounds (VOC) levels in the two rooms where infant twins spend more time at home (30 dwellings, Northern Portugal). Findings showed that, in general, the worst indoor environmental quality (IEQ) settings were found in bedrooms. In fact, although most of the bedrooms surveyed presented adequate comfort conditions in terms of temperature and RH, several children are sleeping in a bedroom with improper ventilation and/or with a significant degree of air pollution. In particular, mean concentrations higher than recommended limits were found for CO2, PM2.5, PM10 and total VOC. Additionally, terpenes and decamethylcyclopentasiloxane were identified as main components of emissions from indoor sources. Overall, findings revealed that factors related to behaviors of the occupants, namely related to a conscientious use of cleaning products, tobacco and other consumer products (air-fresheners, incenses/candles and insecticides) and promotion of ventilation are essential for the improvement of air quality in households and for the promotion of children's health.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Niño , Monitoreo del Ambiente , Humanos , Lactante , Material Particulado/análisis , PortugalRESUMEN
The aim of this study was to explore the association between the building-related occupants' reported health symptoms and the indoor pollutant concentrations in a sample of 148 office rooms, within the framework of the European OFFICAIR research project. A large field campaign was performed in 37 office buildings among eight countries, which included (a) 5-day air sampling of volatile organic compounds (VOCs), aldehydes, ozone, and NO2 (b) collection of information from 1299 participants regarding their personal characteristics and health perception at workplace using online questionnaires. Stepwise and multilevel logistic regressions were applied to investigate associations between health symptoms and pollutant concentrations considering personal characteristics as confounders. Occupants of offices with higher pollutant concentrations were more likely to report health symptoms. Among the studied VOCs, xylenes were associated with general (such as headache and tiredness) and skin symptoms, ethylbenzene with eye irritation and respiratory symptoms, a-pinene with respiratory and heart symptoms, d-limonene with general symptoms, and styrene with skin symptoms. Among aldehydes, formaldehyde was associated with respiratory and general symptoms, acrolein with respiratory symptoms, propionaldehyde with respiratory, general, and heart symptoms, and hexanal with general SBS. Ozone was associated with almost all symptom groups.
Asunto(s)
Contaminación del Aire Interior , Exposición por Inhalación/estadística & datos numéricos , Aldehídos , Autoevaluación Diagnóstica , Monitoreo del Ambiente , Formaldehído , Humanos , Síndrome del Edificio Enfermo , Compuestos Orgánicos Volátiles , Lugar de TrabajoRESUMEN
Conducting epidemiological and risk assessment research that considers the exposome concept, as in the case of HEALS project, requires the acquisition of higher dimension data sets of an increased complexity. In this context, new methods that provide accurate and interpretable data summary on relevant environmental factors are of major importance. In this work, a questionnaire was developed to collect harmonized data on potential pollutant sources to air in the indoor environment where children spend an important part of their early life. The questionnaire was designed in a user friendly checklist format to be filled out at the maternity in ten European cities. This paper presents and discusses the rationale for the selection of the questionnaire contents and the results obtained from its application in the households of 309 HEALS-enrolled families with babies recently born in Porto, Portugal. The tool was very effective in providing data on the putative air pollution sources in homes, with special focus on the bedroom of the newborns. The data collected is part of a wider effort to build the databases and risk assessment models of the HEALS project. The results of the analysis of the collected data suggest that, for the population under study, the main concerns on early life exposures at home can be related to emissions from the use of household solid fuels, indoor tobacco, household cleaning products, fragranced consumer products (e.g. air fresheners, incense and candles), moisture-related pathologies and traffic-related outdoor pollution. Furthermore, it is anticipated that the tool can be a valuable means to empower citizens to actively participate in the control of their own exposures at home. Within this context, the application of the checklist will also allow local stakeholders to identify buildings presenting most evident IAQ problems for sampling or intervention as well as to guide them in preparing evidence-based educational/awareness campaigns to promote public health through creating healthy households.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Monitoreo del Ambiente , Contaminación del Aire Interior/análisis , Lista de Verificación , Femenino , Humanos , Recién Nacido , Portugal , EmbarazoRESUMEN
The aim of this study was to identify determinants of aldehyde and volatile organic compound (VOC) indoor air concentrations in a sample of more than 140 office rooms, in the framework of the European OFFICAIR research project. A large field campaign was performed, which included (a) the air sampling of aldehydes and VOCs in 37 newly built or recently retrofitted office buildings across 8 European countries in summer and winter and (b) the collection of information on building and offices' characteristics using checklists. Linear mixed models for repeated measurements were applied to identify the main factors affecting the measured concentrations of selected indoor air pollutants (IAPs). Several associations between aldehydes and VOCs concentrations and buildings' structural characteristic or occupants' activity patterns were identified. The aldehyde and VOC determinants in office buildings include building and furnishing materials, indoor climate characteristics (room temperature and relative humidity), the use of consumer products (eg, cleaning and personal care products, office equipment), as well as the presence of outdoor sources in the proximity of the buildings (ie, vehicular traffic). Results also showed that determinants of indoor air concentrations varied considerably among different type of pollutants.
Asunto(s)
Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Lugar de Trabajo/estadística & datos numéricos , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Aldehídos/análisis , Europa (Continente) , Modelos Lineales , Compuestos Orgánicos Volátiles/análisisRESUMEN
BACKGROUND: Indoor air contaminants may act as endocrine-disrupting chemicals (EDCs). However, to what extent these contaminants affect health is poorly known. We aimed to assess the association between EDCs exposure and asthma, respiratory symptoms and obesity in schoolchildren. METHODS: Data from a cross-sectional analysis of 815 participants from 20 schools in Porto, Portugal, were analysed. Symptoms were assessed, asthma was defined on lung function, and airway reversibility and body mass index (BMI) were calculated. The concentrations of 13 volatile organic compounds and 2 aldehydes identified as EDCs were measured in 71 classrooms throughout 1 week. Principal component analysis (PCA) was used to assess the effect of co-exposure. Associations were estimated by regression coefficients using linear and logistic regression models. RESULTS: Increased individual and combined EDCs levels were found in classrooms having more children with asthma and obesity. Higher levels of hexane, styrene, cyclohexanone, butylated hydroxytoluene and 2-butoxyethanol were associated with obesity, and higher levels of cyclohexanone were associated with increased child BMI. Toluene, o-xylene, m/p-xylene and ethylbenzene were significantly associated with nasal obstruction. A positive association was found between PC1 and the risk of obese asthma (OR = 1.43, 95% CI 1.01, 1.98) and between PC2 and overweight (OR = 1.51, 95% CI 1.28, 1.79). PC1 and PC2 were also associated with nasal obstruction, and PC2 was associated with breathing difficulties and lean body mass, although EDCs concentrations were low. CONCLUSIONS: Our findings further support the role of EDCs in asthma and obesity development. Moreover, even low levels of indoor exposure may influence the risk of asthma, respiratory symptoms and obesity.
Asunto(s)
Contaminación del Aire Interior/efectos adversos , Asma/epidemiología , Asma/etiología , Disruptores Endocrinos/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Obesidad Infantil/epidemiología , Obesidad Infantil/etiología , Contaminantes Atmosféricos , Asma/complicaciones , Asma/diagnóstico , Sistema Nervioso Autónomo/metabolismo , Sistema Nervioso Autónomo/fisiopatología , Niño , Susceptibilidad a Enfermedades , Femenino , Humanos , Masculino , Sobrepeso , Obesidad Infantil/complicaciones , Obesidad Infantil/diagnóstico , Vigilancia de la Población , Pruebas de Función Respiratoria , Evaluación de Síntomas , Compuestos Orgánicos Volátiles/efectos adversosRESUMEN
BACKGROUND: The diagnosis and phenotyping of paediatric asthma are particularly complex due to the lack of currently available sensitive diagnostic tools. This often results in uncertainties associated with inhaled steroid therapy prescription. Therefore, this study aimed to investigate whether volatile organic compounds measured in exhaled breath condensate can be used as biomarkers for asthma diagnosis in the paediatric population. METHODS: A total of 64 participants, aged 6-18 years, were recruited on a random basis during visits to an outpatient allergy clinic and to a juvenile football team training session. Lung function, airway reversibility and skin prick tests were performed. Exhaled breath condensate samples were collected, and breathprints were assessed using an electronic nose. Information on medical diagnosis of asthma, rhinitis and atopic dermatitis was retrieved for each participant. A hierarchical cluster model based on the volatilome profiles was then created. RESULTS: A two-cluster exhaled volatile organic compound-based hierarchical model was able to significantly discriminate individuals with asthma from those without the disease (AUC = 0.81 [0.69-0.93], P < 0.001). Individuals who had persistent asthma and were prescribed corticosteroid therapy by the physician were also significantly distinguished in the model (AUC = 0.81 [0.70-0.92], P < 0.001). Despite being less specific, the method showed higher overall accuracy, sensitivity and AUC values when compared to spirometry with bronchodilation. CONCLUSIONS: Analysis of the exhaled breath condensate volatilome allowed the distinction of paediatric individuals with a medical diagnosis of asthma, identifying those in need of corticosteroid therapy.
Asunto(s)
Asma/diagnóstico , Asma/metabolismo , Biomarcadores , Pruebas Respiratorias , Espiración , Compuestos Orgánicos Volátiles , Adolescente , Pruebas Respiratorias/métodos , Niño , Estudios Transversales , Femenino , Humanos , Masculino , Oportunidad Relativa , Sensibilidad y Especificidad , Espirometría , Compuestos Orgánicos Volátiles/metabolismoRESUMEN
Differentiation of the exposure to PM2.5 (particulate matter less than 2.5⯵m in aerodynamic diameter), NO2 and O3 i.e. pollutants of outdoor origin, due to the occupation of office and school microenvironments, was investigated through the quantification of the respective Indoor to Outdoor (I/O) ratios, in simple statistical terms. For that cause, indoor and outdoor observation data were retrieved from the HEALS EDMS database, and more specifically the data from the OFFICAIR and the SINPHONIE EU projects. The I/O ratios were produced and were statistically analyzed in order to be able to study the influence of the indoor environment against the pollutants coming from outdoors. The present statistical approach highlighted also the differences of I/O ratios between the two studied microenvironments for each pollutant. For exposure estimation to the above-mentioned pollutants, the probability and cumulative distribution function (pdf/cdf) empirical approximations led to the conclusion that for offices the I/O ratios of PM2.5 follow a normal distribution, while NO2 and O3 a gamma distribution. Respectively, for schools the I/O ratios of all pollutants follow a lognormal distribution.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior/estadística & datos numéricos , Monitoreo del Ambiente , Material Particulado/análisis , Instituciones Académicas , Lugar de TrabajoRESUMEN
Spirometry and exhaled nitric oxide are two important complimentary tools to identify and assess asthma control in children. We aimed to determine the ability of a new suggested spirometry-adjusted fraction of exhaled nitric oxide (NO) index in doing that. A random sample of 1602 schoolchildren were screened by a health questionnaire, skin prick tests, spirometry with bronchodilation and exhaled NO. A total of 662 children were included with median (IQR) exhaled NO 11(14) ppb. Receiver operating characteristic (ROC) curves using exhaled NO equations from Malmberg, Kovesi and Buchvald, and spirometry-adjusted fraction of exhaled NO values were applied to identify asthmatic children and uncontrolled asthma. Receiver operating characteristic (ROC) curves failed to identify asthmatic children (all AUC < 0.700). Spirometry-adjusted fraction of exhaled NO/FEV1 (AUC = 0.712; P = .010) and NO/FEF25%-75% (AUC = 0.735 P = .004) had a fair and increased ability to identify uncontrolled disease compared with exhaled NO (AUC = 0.707; P = .011) or the Malmberg equation (AUC = 0.701; P = .014). Sensitivity and specificity identifying non-controlled asthma were 59% and 81%, respectively, for the cut-off value of 9.7 ppb/L for exhaled NO/FEV1 , and 40% and 100% for 15.7 ppb/L/s for exhaled NO/FEF25%-75% . Exhaled NO did not allow to identify childhood asthma. Spirometry-adjusted fraction of exhaled NO performed better-assessing asthma control in children. Thus, although more validation studies are needed, we suggest its use in epidemiological studies to assess asthma control.
Asunto(s)
Asma/diagnóstico , Óxido Nítrico/metabolismo , Espirometría , Antiasmáticos/uso terapéutico , Asma/tratamiento farmacológico , Asma/metabolismo , Biomarcadores/metabolismo , Pruebas Respiratorias , Niño , Estudios Transversales , Femenino , Humanos , Masculino , Curva ROC , Sensibilidad y Especificidad , Índice de Severidad de la Enfermedad , Resultado del TratamientoRESUMEN
BACKGROUND: Childhood exposure to microbiologic agents may influence the development of allergic and respiratory diseases. Apart from home, children spend most of their time at school, which represents an environment of significant exposure to indoor air microbes. Therefore, we aimed to assess how the prevalence of allergic sensitization and asthma in schoolchildren is affected by microbiologic exposure within classrooms. METHODS: Spirometry with bronchodilation, exhaled nitric oxide measurements and skin-prick tests data were retrieved from 858 children aged 8-10 years attending 71 classrooms in 20 primary schools. Air samples were collected in all classrooms using a single-stage microbiologic air impactor through agar plates. Gram-negative endotoxins were collected using flow control pumps and analysed by limulus amebocyte lysate assay. Diversity scores were established as the number of different fungal species found in each classroom. RESULTS: Classrooms with increased diversity scores showed a significantly lower prevalence of children with atopic sensitization, but not asthma. The risk of sensitization increased with increasing endotoxin exposure in classrooms. Similarly, significantly higher concentrations of Penicillium spp were found in classrooms with a higher number of children with atopic sensitization. CONCLUSIONS: Although no causal relationships could be established, exposure to higher fungal diversity was protective against allergic sensitization but this was not seen for asthma. In contrast, higher exposure to Gram-negative endotoxins and Penicillium spp in primary school's classrooms was associated with increasing odds of allergic sensitization in children.
Asunto(s)
Asma/microbiología , Hipersensibilidad Inmediata/microbiología , Micosis/microbiología , Penicillium/fisiología , Contaminación del Aire Interior , Alérgenos/inmunología , Antígenos Fúngicos/inmunología , Asma/epidemiología , Biodiversidad , Niño , Femenino , Humanos , Hipersensibilidad Inmediata/epidemiología , Masculino , Micosis/epidemiología , Portugal/epidemiología , Instituciones Académicas , EspirometríaRESUMEN
Radon is a radioactive gas, abundant in granitic areas, such as in the city of Porto at the north-east of Portugal. This gas is a recognized carcinogenic agent, being appointed by the World Health Organization as the leading cause of lung cancer after smoking. The aim of this preliminary survey was to determine indoor radon concentrations in public primary schools, to analyse the main factors influencing their indoor concentration levels and to estimate the effective dose in students and teachers in primary schools. Radon concentrations were measured in 45 classrooms from 13 public primary schools located in Porto, using CR-39 passive radon detectors for about 2-month period. In all schools, radon concentrations ranged from 56 to 889 Bq/m(3) (mean = 197 Bq/m(3)). The results showed that the limit of 100 Bq/m(3) established by WHO IAQ guidelines was exceeded in 92 % of the measurements, as well as 8 % of the measurements exceeded the limit of 400 Bq/m(3) established by the national legislation. Moreover, the mean annual effective dose was calculated as 1.25 mSv/y (ranging between 0.58 and 3.07 mSv/y), which is below the action level (3-10 mSv). The considerable variability of radon concentration observed between and within floors indicates a need to monitor concentrations in several rooms for each floor. A single radon detector for each room can be used, provided that the measurement error is considerably lower than variability of radon concentration between rooms. The results of the present survey will provide useful baseline data for adopting safety measures and dealing effectively with radiation emergencies. In particular, radon remediation techniques should be used in buildings located in the highest radon risk areas of Portugal. The results obtained in the current study concerning radon levels and their variations will be useful to optimize the design of future research surveys.
Asunto(s)
Contaminantes Radiactivos del Aire/análisis , Contaminación del Aire Interior/análisis , Radón/análisis , Instituciones Académicas , Humanos , Portugal , Monitoreo de Radiación/métodosRESUMEN
Several studies found associations between exposure to airborne fungi and allergy, infection, or irritation. This study aimed to characterize airborne fungi populations present in public primary schools in Porto, Portugal, during winter through quantification and identification procedures. Fungal concentration levels and identification were obtained in a total of 73 classrooms. The AirIdeal portable air sampler was used in combination with chloramphenicol malt extract agar. Results showed a wide range of indoor fungi levels, with indoor concentrations higher than outdoors. The most prevalent fungi found indoors were Penicillium sp. (>70%) and Cladosporium sp. As evidence indicates that indoor fungal exposures plays a role in asthma clinical status, these results may contribute to (1) promoting and implementing public health prevention programs and (2) formulating recommendations aimed at providing healthier school environments.
Asunto(s)
Microbiología del Aire/normas , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Hongos/aislamiento & purificación , Instituciones Académicas , Asma/microbiología , Cladosporium/aislamiento & purificación , Penicillium/aislamiento & purificación , Portugal , Salud Pública , Estaciones del AñoRESUMEN
Recently, indoor swimming pool activities have increased to promote health-enhancing physical activities, which require establishing suitable protocols for disinfection and water quality control. Normally, the assessment of the microbial quality of the water in the pools only considers the presence of different bacteria. However, other less frequent but more resistant pathogens, such as free-living amoebas (FLA), are not contemplated in both existing recommendation and research activities. FLA represent a relevant human health risk, not only due to their pathogenicity but also due to the ability to act as vehicles of other pathogens, such as bacteria. Therefore, this work aimed to study the physicochemical characteristics and the occurrence of potentially pathogenic FLA and bacteria in water samples from 20 public indoor swimming facilities in Northern Portugal. Our results showed that some swimming pools presented levels of pH, free chlorine, and conductivity out of the recommended limits. Pathogenic FLA species were detected in two of the facilities under study, where we also report the presence of both, FLA and pathogenic bacteria. Our findings evidence the need to assess the occurrence of FLA and their existence in the same environmental niche as pathogenic bacteria in swimming pool facilities worldwide and to establish recommendations to safeguard the health of the users.
Asunto(s)
Amoeba/aislamiento & purificación , Bacterias/aislamiento & purificación , Monitoreo del Ambiente/métodos , Agua Dulce/microbiología , Agua Dulce/parasitología , Piscinas/estadística & datos numéricos , Cloro/análisis , Agua Dulce/química , Humanos , Portugal , Control de Calidad , Salinidad , Microbiología del Agua , Calidad del AguaRESUMEN
Substantial knowledge is available on the association of the indoor school environment and its effect among schoolchildren. In the same context, the SINPHONIE (School indoor pollution and health: Observatory network in Europe) conducted a study to collect data and determine the distribution of several indoor air pollutants (IAPs), physical and thermal parameters and their association with eye, skin, upper-, lower respiratory and systemic disorder symptoms during the previous three months. Finally, data from 115 schools in 54 European cities from 23 countries were collected and included 5175 schoolchildren using a harmonized and standardized protocol. The association between exposures and the health outcomes were examined using logistic regression models on the environmental stressors assessed in classroom while adjusting for several confounding factors; a VOC (volatile organic compound) score defined as the sum of the number of pollutants to which the children were highly exposed (concentrationâ¯>â¯median of the distribution) in classroom was also introduced to evaluate the multiexposure - outcome association. Schoolchildren while adjusting for several confounding factors. Schoolchildren exposed to above or equal median concentration of PM2.5, benzene, limonene, ozone and radon were at significantly higher odds of suffering from upper, lower airways, eye and systemic disorders. Increased odds were also observed for any symptom (sick school syndrome) among schoolchildren exposed to concentrations of limonene and ozone above median values. Furthermore, the risks for upper and lower airways and systemic disorders significantly increased with the VOCs score. Results also showed that increased ventilation rate was significantly associated with decreased odds of suffering from eye and skin disorders whereas similar association was observed between temperature and upper airways symptoms. The present study provides evidence that exposure to IAPs in schools is associated with various health problems in children. Further investigations are needed to confirm our findings.
Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Contaminación del Aire/análisis , Niño , Europa (Continente) , Humanos , Instituciones Académicas , TemperaturaRESUMEN
Elite swimmers and swimming pool employees are likely to be at greater health risk due to their regular and intense exposure to air stressors in the indoor swimming pool environment. Since data on the real long-term exposure is limited, a long-term monitoring and sampling plan (22 non-consecutive days, from March to July 2017) was carried out in an indoor Olympic-size pool with a chlorine-based disinfection method to characterize indoor environments to which people involved in elite swimming and maintenance staff may be exposed to. A comprehensive set of parameters related with comfort and environmental conditions (temperature, relative humidity (RH), carbon dioxide (CO2) and monoxide and ultrafine particles (UFP)) were monitored both indoors and outdoors in order to determine indoor-to-outdoor (I/O) ratios. Additionally, an analysis of volatile organic compounds (VOC) concentration and its dynamics was implemented in three 1-hr periods: early morning, evening elite swimmers training session and late evening. Samplings were simultaneously carried out in the air layer above the water surface and in the air surrounding the pool, selected to be representative of swimmers and coaches/employees' breathing zones, respectively. The results of this work showed that the indoor climate was very stable in terms of air temperature, RH and CO2. In terms of the other measured parameters, mean indoor UFP number concentrations (5158 pt/cm3) were about 50% of those measured outdoors whereas chloroform was the predominant substance detected in all samples collected indoors (13.0-369.3 µg/m3), among a varied list of chemical compounds. An I/O non-trihalomethanes (THM) VOC concentration ratio of 2.7 was also found, suggesting that, beyond THM, other potentially hazardous VOC have also their source(s) indoors. THM and non-THM VOC concentration were found to increase consistently during the evening training session and exhibited a significant seasonal pattern. Compared to their coaches, elite swimmers seemed to be exposed via inhalation to significantly higher total THM levels, but to similar concentrations of non-THM VOC, during routine training activities. Regarding swimming employees, the exposure to THM and other VOC appeared to be significantly minimized during the early morning period. The air/water temperature ratio and RH were identified as important parameters that are likely to trigger the transfer processes of volatile substances from water to air and of their accumulation in the indoor environment of the swimming pool, respectively.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Piscinas , Compuestos Orgánicos Volátiles , Monitoreo del Ambiente , Humanos , Material Particulado , Natación , TrihalometanosRESUMEN
Due to the negative health impacts, significant efforts have been directed towards investigating ultrafine particle (UFP) exposure in various indoor environments. As children spend approximately one third of their time in schools, educatory environments deserve particular attention; however, majority of past research has focused on UFP assessment in classrooms. Thus, this work aims to expand the characterization of UFP in primary schools by considering different indoor and outdoor school microenvironments and estimating inhalation doses for the respective students (6-11yrs old). Real-time UFP measurements were daily conducted (9:00-17:30) in 20 primary schools in Oporto (January-April 2014; October-February 2015) in classrooms, canteens, gyms, libraries, and concurrently outdoors. Overall, UFP concentrations showed large temporal and spatial variations. For classrooms (nâ¯=â¯73), median UFP (1.56â¯×â¯103-16.8â¯×â¯103 # cm-3) were lower than the corresponding levels in ambient air of schools (1.79â¯×â¯103-24.1â¯×â¯103 # cm-3). Outdoor emissions contributed to indoor UFP (indoor-to-outdoor ratios I/O of 0.0.30-0.85), but ventilation, room characteristics and its occupancy were identified as important parameters contributing to overall indoor UFP levels. Considering specific indoor school microenvironments, canteens were the microenvironment with the highest UFP levels (5.47â¯×â¯103-36.4â¯×â¯103 # cm-3), cooking conducted directly on school grounds resulted in significantly elevated UFP in the respective classrooms (pâ¯<â¯0.05); the lowest UFP were found in libraries (4.45â¯×â¯103-8.50â¯×â¯103 # cm-3) mostly due to the limited occupancies. Although students spend majority of their school time in classrooms (66-71%), classroom exposure was not consistently the predominant contributor to school total UFP inhalation dose (29-75%). Outdoor exposure contributed 23-70% of school dose (depending on UFP levels in ambient levels and/or conducted activities) whereas short periods of lunch break accounted for 8-40%. Therefore, when evaluating UFP exposure in educatory settings other microenvironments beyond classrooms should be an integral part of the study.
Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Exposición por Inhalación/análisis , Material Particulado/análisis , Niño , Humanos , Tamaño de la Partícula , Instituciones AcadémicasRESUMEN
Children are in contact with local environments, which may affect respiratory symptoms and allergic sensitization. We aimed to assess the effect of the environment and the walkability surrounding schools on lung function, airway inflammation and autonomic nervous system activity. Data on 701 children from 20 primary schools were analysed. Lung function, airway inflammation and pH from exhaled breath condensate were measured. Pupillometry was performed to evaluate autonomic activity. Land use composition and walkability index were quantified within a 500 m buffer zone around schools. The proportion of effects explained by the school environment was measured by mixed-effect models. We found that green school areas tended to be associated with higher lung volumes (FVC, FEV1 and FEF25-75%) compared with built areas. FVC was significantly lower in-built than in green areas. After adjustment, the school environment explained 23%, 34% and 99.9% of the school effect on FVC, FEV1, and FEF25-75%, respectively. The walkability of school neighbourhoods was negatively associated with both pupil constriction amplitude and redilatation time, explaining -16% to 18% of parasympathetic and 8% to 29% of sympathetic activity. Our findings suggest that the environment surrounding schools has an effect on the lung function of its students. This effect may be partially mediated by the autonomic nervous system.
Asunto(s)
Sistema Nervioso Autónomo/fisiología , Ambiente , Pulmón/fisiología , Instituciones Académicas , Niño , Estudios Transversales , Espiración , Femenino , Humanos , Concentración de Iones de Hidrógeno , Masculino , Análisis Multinivel , Óxido Nítrico/análisis , Características de la Residencia , Pruebas de Función Respiratoria , CaminataRESUMEN
AIM: To evaluate the association between the indoor air quality in Porto schools and the prevalence of allergic and respiratory symptoms in adolescents. MATERIAL AND METHODS: Temperature, relative humidity, carbon dioxide (CO2) and volatile organic compound (VOC) concentrations were evaluated in nine Porto schools. Questionnaires were distributed to 9 classes of 7th , 8th and 9th year students in each school, total 1607 adolescents, with a mean age of 14.0 years (standard deviation=0.3). Information was collected on participants' socio-demographic and social characteristics, behaviour, and housing conditions. The International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire was used to evaluate respiratory symptoms. RESULTS: 5.8% of participants stated they had had asthma, 9.2% wheezing, 22.0% sneezing and 6.6% itchy rash In the 12 months preceding the evaluation. After adjustment for parental educational attainment level, CO2 > 2100 ppm values were associated with exercise- induced wheeze [OR=1.86 (95%CI:1.20-2.89)] and night cough [OR=1.40 (4.20-2.89)]. We observed an increasing odds ratio in wheezing symptoms over the last 12 months, in asthma 'at some point' and asthma over the last 12 months, and night cough at schools with higher VOC values. The association was not statistically significant, however. CONCLUSION: Lower indicators of indoor air quality, particularly CO2, were associated with a greater respiratory symptomatology.
Asunto(s)
Contaminación del Aire Interior/análisis , Trastornos Respiratorios/epidemiología , Adolescente , Niño , Femenino , Humanos , Masculino , Portugal , PrevalenciaRESUMEN
This paper summarizes the results of HealthVent project. It had an aim to develop health-based ventilation guidelines and through this process contribute to advance indoor air quality (IAQ) policies and guidelines. A framework that allows determining ventilation requirements in public and residential buildings based on the health requirements is proposed. The framework is based on three principles: 1. Criteria for permissible concentrations of specific air pollutants set by health authorities have to be respected; 2. Ventilation must be preceded by source control strategies that have been duly adopted to improve IAQ; 3. Base ventilation must always be secured to remove occupant emissions (bio-effluents). The air quality guidelines defined by the World Health Organization (WHO) outside air are used as the reference for determining permissible levels of the indoor air pollutants based on the principle that there is only one air. It is proposed that base ventilation should be set at 4 L/s per person; higher rates are to be used only if WHO guidelines are not followed. Implementation of the framework requires technical guidelines, directives and other legislation. Studies are also needed to examine the effectiveness of the approach and to validate its use. It is estimated that implementing the framework would bring considerable reduction in the burden of disease associated with inadequate IAQ.
Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/normas , Contaminación del Aire Interior/prevención & control , Contaminación del Aire/prevención & control , Guías como Asunto , Vivienda/normas , Ventilación/normas , HumanosRESUMEN
BACKGROUND: Endurance swimming exercises coupled to disinfection by-products exposure has been associated with increased airways dysfunction and neurogenic inflammation in elite swimmers. However, the impact of swimming pool exposure at a recreational level on autonomic activity has never been explored. Therefore, this study aimed to investigate how swimming pool attendance is influencing lung and autonomic function in school-aged children. METHODS: A total of 858 children enrolled a cross sectional survey. Spirometry and airway reversibility to beta-2 agonist, skin-prick-tests and exhaled nitric oxide measurements were performed. Pupillometry was used to evaluate autonomic nervous function. Children were classified as current swimmers (CS), past swimmers (PS) and non-swimmers (NS), according to the amount of swimming practice. RESULTS: Current swimmers group had significantly lower maximum and average pupil constriction velocities when compared to both PS and NS groups (3.8 and 5.1 vs 3.9 and 5.3 vs 4.0 and 5.4 mm/s, p = 0.03 and p = 0.01, respectively). Moreover, affinity to the beta-2 agonist and levels of exhaled nitric oxide were significantly higher in CS when compared to NS (70 vs 60 mL and 12 vs 10 ppb, p<0.01 and p = 0.03, respectively). A non-significant trend for a higher risk of asthma, atopic eczema and allergic rhinitis was found with more years of swimming practice, particularly in atopic individuals (ß = 1.12, 1.40 and 1.31, respectively). After case-case analysis, it was possible to observe that results were not influenced by the inclusion of individuals with asthma. CONCLUSIONS: Concluding, swimming pool attendance appears to be associated with autonomic changes and increased baseline airway smooth muscle constriction even in children without asthma.