Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(1): 209-229.e26, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608654

RESUMEN

Transcription factors (TFs) regulate gene programs, thereby controlling diverse cellular processes and cell states. To comprehensively understand TFs and the programs they control, we created a barcoded library of all annotated human TF splice isoforms (>3,500) and applied it to build a TF Atlas charting expression profiles of human embryonic stem cells (hESCs) overexpressing each TF at single-cell resolution. We mapped TF-induced expression profiles to reference cell types and validated candidate TFs for generation of diverse cell types, spanning all three germ layers and trophoblasts. Targeted screens with subsets of the library allowed us to create a tailored cellular disease model and integrate mRNA expression and chromatin accessibility data to identify downstream regulators. Finally, we characterized the effects of combinatorial TF overexpression by developing and validating a strategy for predicting combinations of TFs that produce target expression profiles matching reference cell types to accelerate cellular engineering efforts.


Asunto(s)
Diferenciación Celular , Factores de Transcripción , Humanos , Cromatina , Regulación de la Expresión Génica , Células Madre Embrionarias Humanas/metabolismo , Factores de Transcripción/metabolismo , Atlas como Asunto
2.
Cell ; 185(13): 2324-2337.e16, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35643083

RESUMEN

The type III-E CRISPR-Cas effector Cas7-11, with dual RNase activities for precursor CRISPR RNA (pre-crRNA) processing and crRNA-guided target RNA cleavage, is a new platform for bacterial and mammalian RNA targeting. We report the 2.5-Å resolution cryoelectron microscopy structure of Cas7-11 in complex with a crRNA and its target RNA. Cas7-11 adopts a modular architecture comprising seven domains (Cas7.1-Cas7.4, Cas11, INS, and CTE) and four interdomain linkers. The crRNA 5' tag is recognized and processed by Cas7.1, whereas the crRNA spacer hybridizes with the target RNA. Consistent with our biochemical data, the catalytic residues for programmable cleavage in Cas7.2 and Cas7.3 neighbor the scissile phosphates before the flipped-out fourth and tenth nucleotides in the target RNA, respectively. Using structural insights, we rationally engineered a compact Cas7-11 variant (Cas7-11S) for single-vector AAV packaging for transcript knockdown in human cells, enabling in vivo Cas7-11 applications.


Asunto(s)
Proteínas Asociadas a CRISPR , Proteínas Asociadas a CRISPR/química , Sistemas CRISPR-Cas , Microscopía por Crioelectrón , Humanos , Precursores del ARN , ARN Bacteriano/química , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genética
3.
Nat Rev Mol Cell Biol ; 25(6): 464-487, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38308006

RESUMEN

Our ability to edit genomes lags behind our capacity to sequence them, but the growing understanding of CRISPR biology and its application to genome, epigenome and transcriptome engineering is narrowing this gap. In this Review, we discuss recent developments of various CRISPR-based systems that can transiently or permanently modify the genome and the transcriptome. The discovery of further CRISPR enzymes and systems through functional metagenomics has meaningfully broadened the applicability of CRISPR-based editing. Engineered Cas variants offer diverse capabilities such as base editing, prime editing, gene insertion and gene regulation, thereby providing a panoply of tools for the scientific community. We highlight the strengths and weaknesses of current CRISPR tools, considering their efficiency, precision, specificity, reliance on cellular DNA repair mechanisms and their applications in both fundamental biology and therapeutics. Finally, we discuss ongoing clinical trials that illustrate the potential impact of CRISPR systems on human health.


Asunto(s)
Sistemas CRISPR-Cas , Epigenoma , Edición Génica , Transcriptoma , Humanos , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Epigenoma/genética , Animales , Transcriptoma/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Genoma/genética
4.
Cell ; 184(13): 3376-3393.e17, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34043940

RESUMEN

We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a high-resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Metagenómica , Microbiota/genética , Población Urbana , Biodiversidad , Bases de Datos Genéticas , Humanos
7.
Cell ; 164(5): 950-61, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26875867

RESUMEN

The RNA-guided endonuclease Cas9 cleaves double-stranded DNA targets complementary to the guide RNA and has been applied to programmable genome editing. Cas9-mediated cleavage requires a protospacer adjacent motif (PAM) juxtaposed with the DNA target sequence, thus constricting the range of targetable sites. Here, we report the 1.7 Å resolution crystal structures of Cas9 from Francisella novicida (FnCas9), one of the largest Cas9 orthologs, in complex with a guide RNA and its PAM-containing DNA targets. A structural comparison of FnCas9 with other Cas9 orthologs revealed striking conserved and divergent features among distantly related CRISPR-Cas9 systems. We found that FnCas9 recognizes the 5'-NGG-3' PAM, and used the structural information to create a variant that can recognize the more relaxed 5'-YG-3' PAM. Furthermore, we demonstrated that the FnCas9-ribonucleoprotein complex can be microinjected into mouse zygotes to edit endogenous sites with the 5'-YG-3' PAM, thus expanding the target space of the CRISPR-Cas9 toolbox.


Asunto(s)
Proteínas Bacterianas/química , Sistemas CRISPR-Cas , Endonucleasas/química , Francisella/enzimología , Ingeniería Genética/métodos , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Blastocisto/metabolismo , Proteína 9 Asociada a CRISPR , Cristalografía por Rayos X , Embrión de Mamíferos/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Ratones , Microinyecciones/métodos , Modelos Moleculares , ARN Guía de Kinetoplastida/genética
8.
Cell ; 163(3): 759-71, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26422227

RESUMEN

The microbial adaptive immune system CRISPR mediates defense against foreign genetic elements through two classes of RNA-guided nuclease effectors. Class 1 effectors utilize multi-protein complexes, whereas class 2 effectors rely on single-component effector proteins such as the well-characterized Cas9. Here, we report characterization of Cpf1, a putative class 2 CRISPR effector. We demonstrate that Cpf1 mediates robust DNA interference with features distinct from Cas9. Cpf1 is a single RNA-guided endonuclease lacking tracrRNA, and it utilizes a T-rich protospacer-adjacent motif. Moreover, Cpf1 cleaves DNA via a staggered DNA double-stranded break. Out of 16 Cpf1-family proteins, we identified two candidate enzymes from Acidaminococcus and Lachnospiraceae, with efficient genome-editing activity in human cells. Identifying this mechanism of interference broadens our understanding of CRISPR-Cas systems and advances their genome editing applications.


Asunto(s)
Sistemas CRISPR-Cas , Endonucleasas/genética , Francisella/genética , Ingeniería Genética/métodos , Secuencia de Aminoácidos , Endonucleasas/química , Francisella/enzimología , Células HEK293 , Humanos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN Guía de Kinetoplastida/genética , Alineación de Secuencia
9.
Nature ; 597(7878): 720-725, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34489594

RESUMEN

CRISPR-Cas interference is mediated by Cas effector nucleases that are either components of multisubunit complexes-in class 1 CRISPR-Cas systems-or domains of a single protein-in class 2 systems1-3. Here we show that the subtype III-E effector Cas7-11 is a single-protein effector in the class 1 CRISPR-Cas systems originating from the fusion of a putative Cas11 domain and multiple Cas7 subunits that are derived from subtype III-D. Cas7-11 from Desulfonema ishimotonii (DiCas7-11), when expressed in Escherichia coli, has substantial RNA interference effectivity against mRNAs and bacteriophages. Similar to many class 2 effectors-and unique among class 1 systems-DiCas7-11 processes pre-CRISPR RNA into mature CRISPR RNA (crRNA) and cleaves RNA at positions defined by the target:spacer duplex, without detectable non-specific activity. We engineered Cas7-11 for RNA knockdown and editing in mammalian cells. We show that Cas7-11 has no effects on cell viability, whereas other RNA-targeting tools (such as short hairpin RNAs and Cas13) show substantial cell toxicity4,5. This study illustrates the evolution of a single-protein effector from multisubunit class 1 effector complexes, expanding our understanding of the diversity of CRISPR systems. Cas7-11 provides the basis for new programmable RNA-targeting tools that are free of collateral activity and cell toxicity.


Asunto(s)
Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Edición Génica , ARN/genética , Biología Computacional , Deltaproteobacteria/genética , Escherichia coli , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Interferencia de ARN
10.
Mol Cell ; 76(5): 826-837.e11, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31607545

RESUMEN

The CRISPR effector Cas13 could be an effective antiviral for single-stranded RNA (ssRNA) viruses because it programmably cleaves RNAs complementary to its CRISPR RNA (crRNA). Here, we computationally identify thousands of potential Cas13 crRNA target sites in hundreds of ssRNA viral species that can potentially infect humans. We experimentally demonstrate Cas13's potent activity against three distinct ssRNA viruses: lymphocytic choriomeningitis virus (LCMV); influenza A virus (IAV); and vesicular stomatitis virus (VSV). Combining this antiviral activity with Cas13-based diagnostics, we develop Cas13-assisted restriction of viral expression and readout (CARVER), an end-to-end platform that uses Cas13 to detect and destroy viral RNA. We further screen hundreds of crRNAs along the LCMV genome to evaluate how conservation and target RNA nucleotide content influence Cas13's antiviral activity. Our results demonstrate that Cas13 can be harnessed to target a wide range of ssRNA viruses and CARVER's potential broad utility for rapid diagnostic and antiviral drug development.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Marcación de Gen/métodos , Estabilidad del ARN , Virus ARN/enzimología , ARN Viral/metabolismo , Células A549 , Animales , Proteínas Asociadas a CRISPR/genética , Chlorocebus aethiops , Perros , Escherichia coli/enzimología , Escherichia coli/genética , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Virus ARN/genética , ARN Viral/genética , Células Vero
11.
Biochemistry ; 62(24): 3465-3487, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-37192099

RESUMEN

CRISPR systems mediate adaptive immunity in bacteria and archaea through diverse effector mechanisms and have been repurposed for versatile applications in therapeutics and diagnostics thanks to their facile reprogramming with RNA guides. RNA-guided CRISPR-Cas targeting and interference are mediated by effectors that are either components of multisubunit complexes in class 1 systems or multidomain single-effector proteins in class 2. The compact class 2 CRISPR systems have been broadly adopted for multiple applications, especially genome editing, leading to a transformation of the molecular biology and biotechnology toolkit. The diversity of class 2 effector enzymes, initially limited to the Cas9 nuclease, was substantially expanded via computational genome and metagenome mining to include numerous variants of Cas12 and Cas13, providing substrates for the development of versatile, orthogonal molecular tools. Characterization of these diverse CRISPR effectors uncovered many new features, including distinct protospacer adjacent motifs (PAMs) that expand the targeting space, improved editing specificity, RNA rather than DNA targeting, smaller crRNAs, staggered and blunt end cuts, miniature enzymes, promiscuous RNA and DNA cleavage, etc. These unique properties enabled multiple applications, such as harnessing the promiscuous RNase activity of the type VI effector, Cas13, for supersensitive nucleic acid detection. class 1 CRISPR systems have been adopted for genome editing, as well, despite the challenge of expressing and delivering the multiprotein class 1 effectors. The rich diversity of CRISPR enzymes led to rapid maturation of the genome editing toolbox, with capabilities such as gene knockout, base editing, prime editing, gene insertion, DNA imaging, epigenetic modulation, transcriptional modulation, and RNA editing. Combined with rational design and engineering of the effector proteins and associated RNAs, the natural diversity of CRISPR and related bacterial RNA-guided systems provides a vast resource for expanding the repertoire of tools for molecular biology and biotechnology.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Edición Génica/métodos , Bacterias/genética , ARN Bacteriano/genética , ADN
12.
Cell Mol Biol (Noisy-le-grand) ; 69(3): 198-206, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37300667

RESUMEN

Klebsiella pneumoniae producing extended-spectrum ß-lactamases (ESBL) continues to pose huge therapeutic challenges in the treatment of infections, primarily urinary infections, due to its multidrug resistance to antibiotics. Therefore, there is a need for research on this topic to investigate ways to reduce the spread of antibiotic resistance, identify novel therapeutic approaches to treat these infections and gain a better understanding of the mechanisms of resistance. In this context, this study aimed to analyze the chemical composition of essential oils (EOs) of Thymus algeriensis, Syzygium aromaticum, and Eucalyptus globulus and assess their activity against K. pneumoniae ESBL strains, as well as the interaction type between these EOs and antibiotics used for the treatment of K. pneumoniae ESBL infections. The composition of the EOs was determined by gas chromatography-mass spectrometry (GC-MS). The activity of EOs was tested using the disc diffusion and liquid microdilution methods. The type of interaction between EOs and antibiotics was studied using the agar disk diffusion and chessboard methods. The analysis of the EO of T. algeriensis showed that the main compounds were thymol (23.14%), linalool (18.44%), and p-cymene (16.17%). The main constituents of EO of E. globulus were eucalyptol (54.29%), α-pinene (17.32%), aromadendrene (7.02%), and pinocarveol (6.32%). As for the EO of S. aromaticum, the major constituents were eugenol (80.46%) and eugenol acetate (16.23%). Results of the activity tests showed that all three EOs were active against the tested strains, with inhibition diameters ranging from 7.39±0.44mm to 32.4±1.05mm and minimum inhibitory concentrations (MICs) varying from 2 to 441.5±5.66 mg/ml. A synergistic interaction was obtained between amoxicillin-clavulanic acid and T. algeriensis EO against two strains of K. pneumoniae ESBL. These results demonstrate the potential of our EOs to inhibit multi-resistant pathogenic ESBL strains, as well as their synergistic interaction with antibiotics used in therapy, which could be an alternative to the use of antibiotics alone in treatment to fight against these multi-resistant pathogenic bacteria.


Asunto(s)
Antibacterianos , Aceites Volátiles , Antibacterianos/farmacología , Aceites Volátiles/farmacología , Aceites Volátiles/química , Klebsiella pneumoniae , Eugenol , Timol , Bacterias , Pruebas de Sensibilidad Microbiana
14.
Nature ; 548(7667): 343-346, 2017 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-28792927

RESUMEN

Mammalian genomes contain thousands of loci that transcribe long noncoding RNAs (lncRNAs), some of which are known to carry out critical roles in diverse cellular processes through a variety of mechanisms. Although some lncRNA loci encode RNAs that act non-locally (in trans), there is emerging evidence that many lncRNA loci act locally (in cis) to regulate the expression of nearby genes-for example, through functions of the lncRNA promoter, transcription, or transcript itself. Despite their potentially important roles, it remains challenging to identify functional lncRNA loci and distinguish among these and other mechanisms. Here, to address these challenges, we developed a genome-scale CRISPR-Cas9 activation screen that targets more than 10,000 lncRNA transcriptional start sites to identify noncoding loci that influence a phenotype of interest. We found 11 lncRNA loci that, upon recruitment of an activator, mediate resistance to BRAF inhibitors in human melanoma cells. Most candidate loci appear to regulate nearby genes. Detailed analysis of one candidate, termed EMICERI, revealed that its transcriptional activation resulted in dosage-dependent activation of four neighbouring protein-coding genes, one of which confers the resistance phenotype. Our screening and characterization approach provides a CRISPR toolkit with which to systematically discover the functions of noncoding loci and elucidate their diverse roles in gene regulation and cellular function.


Asunto(s)
Resistencia a Antineoplásicos/genética , Sitios Genéticos/genética , Genoma Humano/genética , Indoles/farmacología , Melanoma/genética , ARN Largo no Codificante/genética , Sulfonamidas/farmacología , Activación Transcripcional/genética , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Sitios Genéticos/efectos de los fármacos , Vía de Señalización Hippo , Humanos , Indoles/uso terapéutico , Melanoma/tratamiento farmacológico , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Fenotipo , Regiones Promotoras Genéticas/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Sulfonamidas/uso terapéutico , Sitio de Iniciación de la Transcripción , Vemurafenib
16.
Nature ; 550(7675): 280-284, 2017 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-28976959

RESUMEN

RNA has important and diverse roles in biology, but molecular tools to manipulate and measure it are limited. For example, RNA interference can efficiently knockdown RNAs, but it is prone to off-target effects, and visualizing RNAs typically relies on the introduction of exogenous tags. Here we demonstrate that the class 2 type VI RNA-guided RNA-targeting CRISPR-Cas effector Cas13a (previously known as C2c2) can be engineered for mammalian cell RNA knockdown and binding. After initial screening of 15 orthologues, we identified Cas13a from Leptotrichia wadei (LwaCas13a) as the most effective in an interference assay in Escherichia coli. LwaCas13a can be heterologously expressed in mammalian and plant cells for targeted knockdown of either reporter or endogenous transcripts with comparable levels of knockdown as RNA interference and improved specificity. Catalytically inactive LwaCas13a maintains targeted RNA binding activity, which we leveraged for programmable tracking of transcripts in live cells. Our results establish CRISPR-Cas13a as a flexible platform for studying RNA in mammalian cells and therapeutic development.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Edición Génica , Técnicas de Silenciamiento del Gen/métodos , Leptotrichia/enzimología , ARN/genética , ARN/metabolismo , Biocatálisis , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética , Línea Celular Tumoral , Supervivencia Celular , Escherichia coli/genética , Genes Reporteros/genética , Células HEK293 , Humanos , Leptotrichia/genética , Células Vegetales/metabolismo , ARN/análisis , Interferencia de ARN , Estrés Fisiológico , Especificidad por Sustrato
17.
Mol Cell ; 60(3): 385-97, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26593719

RESUMEN

Microbial CRISPR-Cas systems are divided into Class 1, with multisubunit effector complexes, and Class 2, with single protein effectors. Currently, only two Class 2 effectors, Cas9 and Cpf1, are known. We describe here three distinct Class 2 CRISPR-Cas systems. The effectors of two of the identified systems, C2c1 and C2c3, contain RuvC-like endonuclease domains distantly related to Cpf1. The third system, C2c2, contains an effector with two predicted HEPN RNase domains. Whereas production of mature CRISPR RNA (crRNA) by C2c1 depends on tracrRNA, C2c2 crRNA maturation is tracrRNA independent. We found that C2c1 systems can mediate DNA interference in a 5'-PAM-dependent fashion analogous to Cpf1. However, unlike Cpf1, which is a single-RNA-guided nuclease, C2c1 depends on both crRNA and tracrRNA for DNA cleavage. Finally, comparative analysis indicates that Class 2 CRISPR-Cas systems evolved on multiple occasions through recombination of Class 1 adaptation modules with effector proteins acquired from distinct mobile elements.


Asunto(s)
Bacterias , Proteínas Bacterianas , Sistemas CRISPR-Cas/fisiología , Evolución Molecular , ARN Bacteriano , Ribonucleasas , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Estructura Terciaria de Proteína , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Recombinación Genética/fisiología , Ribonucleasas/genética , Ribonucleasas/metabolismo
18.
Aesthetic Plast Surg ; 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978087

RESUMEN

BACKGROUND: Women with multiple pregnancies often experience abdominal protrusion and/or a lax abdominal wall. Various open surgical techniques have been developed to address rectus diastasis in abdominoplasty, ranging from suture plication to mesh reinforcement. This study aims to compare the clinical and radiological changes between traditional abdominal plication and the addition of non-absorbable mesh for rectus muscle (RM) diastasis repair in terms of function, postoperative outcome, and recurrence. PATIENTS AND METHOD: This prospective retrospective study involved 63 women who underwent cosmetic tummy tuck surgery and met certain eligibility criteria. Patients with only mild diastasis recti, midline hernia, contraindications for major surgery, recent smoking history, or refusal of mesh augmentation were excluded. Clinical examination for abdominal protrusion or bulging and CT imaging was performed to check for recurrence of diastasis recti. The study included 33 patients who underwent mesh repair and 30 who underwent traditional abdominal plication. Follow-up was conducted after 1 year using CT and a questionnaire to assess various factors compared to preoperative measurements, with overall satisfaction rated on a 10-point Likert scale. RESULTS: There was no significant difference in demographic data between the two groups. Patients who underwent mesh repair had a slightly longer hospital stay and drain duration. The average waist circumference decreased in both groups without any statistically significant difference. Objective CT showed significant reductions in both groups in inter-rectus distance, RM width and circumference, and intra-abdominal circumference compared to preoperative values. All patients expressed satisfaction with scar quality and umbilicus aesthetics, and no recurrence was detected either clinically or radiologically during the follow-up period. CONCLUSION: Comprehensive preoperative assessment and imaging techniques like ultrasound and CT scans allow surgeons to detect postpartum changes in the abdominal wall. Mesh reinforcement may be indicated for diastasis above 4 cm in obese multiparous females. Thorough preoperative evaluation permits customized surgical plans to optimally restore abdominal wall anatomy and function. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors at www.springer.com/00266 .

19.
Molecules ; 27(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36500510

RESUMEN

Methylene blue (MB) immobilized onto a sulfonated poly(glycidyl methacrylate) (SPGMA) polymer composite has been developed as a novel adsorbent for water treatment applications. The MB adsorptions onto sulfonated poly(glycidyl methacrylate) polymer characters have been studied. The adsorption isotherms, namely Langmuir and Freundlich, have been investigated. Other isotherm models. As a compromise between the Freundlich and Langmuir isotherm models, such as the D-R isotherm and the Temkin isotherm, have been compared. The results indicated that the adsorption process followed the Freundlich isotherm model, indicating heterogeneous surface site energies and multi-layer levels of sorption. This study selected three linear kinetic models, namely pseudo-first order, pseudo-second order, and Elovich, to describe the MB sorption process using SPGMA negatively charged nanoparticles (430 nm). The obtained data revealed that the adsorption process obeyed the pseudo-second-order kinetic model, suggesting that the rate-limiting step in these sorption processes may be chemisorption. Furthermore, the thermodynamic parameters have been evaluated. Moreover, the interaction of the MB molecules with SPGMA nanoparticles has been simulated using the governing equation that describes ion exchange resin derived from Nernst-Plank equations between two ion species. Finally, the developed MB-SPGMA composite adsorbent (27 mg/g) wastested for the first time for the removal of Cr6+ ions and Mn7+ metal ions from dichromate and permanganate-contaminated waters under mild adsorption conditions, opening a new field of multiuse of the same adsorbent in the removal of more than one contaminant.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Azul de Metileno , Compuestos Azo , Polímeros , Concentración de Iones de Hidrógeno , Purificación del Agua/métodos , Cinética , Adsorción , Termodinámica , Alcanosulfonatos
20.
Nature ; 517(7536): 583-8, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25494202

RESUMEN

Systematic interrogation of gene function requires the ability to perturb gene expression in a robust and generalizable manner. Here we describe structure-guided engineering of a CRISPR-Cas9 complex to mediate efficient transcriptional activation at endogenous genomic loci. We used these engineered Cas9 activation complexes to investigate single-guide RNA (sgRNA) targeting rules for effective transcriptional activation, to demonstrate multiplexed activation of ten genes simultaneously, and to upregulate long intergenic non-coding RNA (lincRNA) transcripts. We also synthesized a library consisting of 70,290 guides targeting all human RefSeq coding isoforms to screen for genes that, upon activation, confer resistance to a BRAF inhibitor. The top hits included genes previously shown to be able to confer resistance, and novel candidates were validated using individual sgRNA and complementary DNA overexpression. A gene expression signature based on the top screening hits correlated with markers of BRAF inhibitor resistance in cell lines and patient-derived samples. These results collectively demonstrate the potential of Cas9-based activators as a powerful genetic perturbation technology.


Asunto(s)
Sistemas CRISPR-Cas/genética , Ingeniería Genética/métodos , Genoma Humano/genética , Melanoma/genética , Activación Transcripcional/genética , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN Complementario/biosíntesis , ADN Complementario/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/genética , Biblioteca de Genes , Sitios Genéticos/genética , Pruebas Genéticas , Humanos , Indoles/farmacología , Melanoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , ARN no Traducido/biosíntesis , ARN no Traducido/genética , ARN no Traducido/metabolismo , Reproducibilidad de los Resultados , Sulfonamidas/farmacología , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA