Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Biol ; 16(7): e2004921, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30001322

RESUMEN

Spicy foods elicit a pungent or hot and painful sensation that repels almost all mammals. Here, we observe that the tree shrew (Tupaia belangeri chinensis), which possesses a close relationship with primates and can directly and actively consume spicy plants. Our genomic and functional analyses reveal that a single point mutation in the tree shrew's transient receptor potential vanilloid type-1 (TRPV1) ion channel (tsV1) lowers its sensitivity to capsaicinoids, which enables the unique feeding behavior of tree shrews with regards to pungent plants. We show that strong selection for this residue in tsV1 might be driven by Piper boehmeriaefolium, a spicy plant that geographically overlaps with the tree shrew and produces Cap2, a capsaicin analog, in abundance. We propose that the mutation in tsV1 is a part of evolutionary adaptation that enables the tree shrew to tolerate pungency, thus widening the range of its diet for better survival.


Asunto(s)
Especias , Tupaia/fisiología , Adaptación Fisiológica , Aminoácidos/genética , Animales , Capsaicina/farmacología , Capsicum , Secuencia Conservada , Mutación/genética , Nociceptores/metabolismo , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(7): 1646-1651, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29358396

RESUMEN

Centipedes can subdue giant prey by using venom, which is metabolically expensive to synthesize and thus used frugally through efficiently disrupting essential physiological systems. Here, we show that a centipede (Scolopendra subspinipes mutilans, ∼3 g) can subdue a mouse (∼45 g) within 30 seconds. We found that this observation is largely due to a peptide toxin in the venom, SsTx, and further established that SsTx blocks KCNQ potassium channels to exert the lethal toxicity. We also demonstrated that a KCNQ opener, retigabine, neutralizes the toxicity of a centipede's venom. The study indicates that centipedes' venom has evolved to simultaneously disrupt cardiovascular, respiratory, muscular, and nervous systems by targeting the broadly distributed KCNQ channels, thus providing a therapeutic strategy for centipede envenomation.


Asunto(s)
Venenos de Artrópodos/toxicidad , Artrópodos/fisiología , Canales de Potasio KCNQ/antagonistas & inhibidores , Enfermedades del Sistema Nervioso/inducido químicamente , Conducta Predatoria/efectos de los fármacos , Anomalías del Sistema Respiratorio/inducido químicamente , Animales , Anticonvulsivantes/farmacología , Carbamatos/farmacología , Ratones , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/metabolismo , Fenilendiaminas/farmacología , Anomalías del Sistema Respiratorio/tratamiento farmacológico , Anomalías del Sistema Respiratorio/metabolismo
3.
Amino Acids ; 49(7): 1237-1245, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28497266

RESUMEN

Spiders are the most successful insect predators given that they use their venom containing insecticidal peptides as biochemical weapons for preying. Due to the high specificity and potency of peptidic toxins, discoveries of insecticidal toxins from spider venom have provided an opportunity to obtain natural compounds for agricultural applications without affecting human health. In this study, a novel insecticidal toxin (µ-NPTX-Nc1a) was identified and characterized from the venom of Nephila clavata. Its primary sequence is GCNPDCTGIQCGWPRCPGGQNPVMDKCVSCCPFCPPKSAQG which was determined by automated Edman degradation, cDNA cloning, and MS/MS analysis. BLAST search indicated that Nc1a shows no similarity with known peptides or proteins, indicating that Nc1a belongs to a novel family of insecticidal peptide. Nc1a displayed inhibitory effects on NaV and KV channels in cockroach dorsal unpaired median neurons. The median lethal dose (LD50) of Nc1a on cockroach was 573 ng/g. Herein, a study that identifies a novel insecticidal toxin, which can be a potential candidate and/or template for the development of bioinsecticides, is presented.


Asunto(s)
Proteínas de Artrópodos/química , Insecticidas/química , Venenos de Araña/química , Arañas/química , Animales , Proteínas de Artrópodos/genética , Venenos de Araña/genética , Arañas/genética
4.
Front Vet Sci ; 7: 615915, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33490139

RESUMEN

From a survival perspective, it is hypothesized that leech saliva exhibits certain physiological effects to ensure fast blood-feeding, including analgesia, anesthesia, and anti-inflammation to stay undetected by the host and vasodilatation and anti-hemostasis to ensure a steady, rapid, and sustained blood flow to the feeding site. Many anti-hemostatic compounds have been identified in leech saliva, such as hirudin, calin, and bdellin A. However, no specific substance with direct vasodilatory and anti-inflammatory function has been reported from forest leech saliva. Herein, using activity-guided analysis, prostaglandin E1 (PGE1) was identified for the first time as an efficient molecular tool for forest leech blood sucking. The structure of PGE1 was analyzed by nuclear magnetic resonance spectroscopy and high-resolution electrospray ionization mass spectroscopy. PGE1 was found to be primarily distributed in the leech salivary gland (1228.36 ng/g body weight). We also analyzed how forest leech PGE1 affects platelet aggregation, skin vascular permeability, bleeding time, and pain. Results indicated that PGE1 efficiently inhibited platelet aggregation induced by adenosine diphosphate (ADP) (5 µM) with an IC50 of 21.81 ± 2.24 nM. At doses of 10, 100 nM, and 1 µM, PGE1 increased vascular permeability by 1.18, 5.8, and 9.2 times. It also prolonged bleeding time in a concentration-independent manner. In the formalin-induced mouse paw pain model, PGE1 suppressed acute pain. To the best of our knowledge, this is the first report on PGE1 in invertebrates. The functions of PGE1, such as vasodilation, platelet aggregation inhibition, anti-inflammation, and pain alleviation, may facilitate the ingestion of host blood by leeches.

5.
Nat Prod Res ; 34(21): 3027-3035, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31084207

RESUMEN

Twenty-two diterpenoids (1-22), including two new ones (1, a tigliane-type diterpenoid and 8, an abietane-type diterpenoid) were isolated from the roots of Euphorbia fischeriana Steud. Among them, compounds 4, 7, 12, 14-16, 19-21 are isolated from this plant for the first time. Their structures were elucidated through extensive 1D, 2D NMR and the HRESIMS data. The 13C data of 4 is hereby presented for the first time. The macrocyclic diterpenes 1 and 2 showed marked enhancement of lysosomal biosynthesis after evaluation using lysoTracker staining method.


Asunto(s)
Diterpenos/química , Diterpenos/farmacología , Euphorbia/química , Lisosomas/efectos de los fármacos , Abietanos/química , Diterpenos/aislamiento & purificación , Evaluación Preclínica de Medicamentos , Células HeLa , Humanos , Lisosomas/metabolismo , Espectroscopía de Resonancia Magnética , Estructura Molecular , Oxígeno/química , Ésteres del Forbol/química , Raíces de Plantas/química , Espectrometría de Masa por Ionización de Electrospray
6.
Toxicon ; 154: 60-68, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30273703

RESUMEN

Centipede bites are usually characterized by mildly to moderately painful encounters with humans, however, they are relatively infrequent. The vast majority of centipede envenomations do not cause severe symptoms and only in very rare cases more serious symptoms such as myocardial ischemia and infarction, hematuria, hemoglobinuria, rhabdomyolysis, hemorrhage, pruritus, eosinophilic cellulitis, as well as anaphylaxis are observed. More prevalent are symptoms including pain, paresthesia, lethargy, localized necrosis, headache, dizziness and nausea. The numerous symptoms and complications elicited by these envenomations indicate that centipede venom possesses an arsenal of chemical components with functional diversity. Centipede venom is a rich and complex natural source of bioactive proteins, peptides and other small molecules that aid in predation or defense. The venom can induce myotoxic, cardiotoxic, neurotoxic and other toxic effects. The constituents target different cellular processes and pathways which in turn trigger a cascade of physiological reactions in the victim. The venom components are potent and selective on peripheral targets; thus, they are valuable in studying the molecular basis of these envenomation symptoms and complications. This review highlights the clinical importance of centipede envenomation and the recent discoveries on the underlying molecular mechanisms of the resulting symptoms which is crucial in therapy.


Asunto(s)
Venenos de Artrópodos/química , Venenos de Artrópodos/farmacología , Mordeduras y Picaduras/etiología , Animales , Venenos de Artrópodos/envenenamiento , Venenos de Artrópodos/toxicidad , Artrópodos/química , Humanos
7.
Toxicon ; 148: 56-63, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29654869

RESUMEN

The molecular mechanism of the local hypersensitivity reactions to wasp venom including dermal necrosis remains an enigma regardless of the numerosity of the reported cases. In this study, we discovered a new membrane disrupting toxin, VESCP-M2 responsible for tissue damage symptoms following Vespa mandarinia envenomation. Electrophysiological assays revealed a potent ability of VESCP-M2 to permeate the cell membrane whereas in vivo experiments demonstrated that VESCP-M2 induces edema, pain and dermal necrosis characterized by the presence of morphological and behavioral phenotypes, pro-inflammatory mediators, biomarkers as well as the disruption of dermal tissue. This study presents the molecular mechanism and symptom-related function of VESCP-M2 which may form a basis for prognosis as well as therapeutic interventions.


Asunto(s)
Membrana Celular/fisiología , Venenos de Avispas/toxicidad , Avispas , Secuencia de Aminoácidos , Animales , Apolipoproteína A-I , Células CHO , Cricetulus , Edema/inducido químicamente , Células HEK293 , Células HeLa , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hipersensibilidad/patología , Queratinas , Ratones Endogámicos BALB C , Ratones Desnudos , Necrosis/inducido químicamente , Dolor , Péptidos/química , Péptidos/toxicidad , Venenos de Avispas/química
8.
Thromb Haemost ; 117(6): 1031-1039, 2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28276572

RESUMEN

The repugnatorial glands of millipedes release various defensive chemical secretions. Although varieties of such defensive secretions have been studied, none of them is protein or peptide. Herein, a novel factor Xa (FXa) inhibitor named joannsin was identified and characterised from repugnatorial glands of Prospirobolus joannsi. Joannsin is composed of 72 amino acid residues including six cysteines, which form three intra-molecular disulfide bridges. It is a member of Kunitz-type protease inhibitor family, members of which are also found in the secretory glands of other arthropods. Recombinant joannsin exhibited remarkable inhibitory activity against trypsin and FXa with a Ki of 182.7 ± 14.6 and 29.5 ± 4.7 nM, respectively. Joannsin showed strong anti-thrombosis functions in vitro and in vivo. Joannsin is the first peptide component in millipede repugnatorial glands to be identified and is a potential candidate and/or template for the development of anti-thrombotic agents. These results also indicated that there is Kunitz-type protease inhibitor toxin in millipede repugnatorial glands as in other arthropods secretory glands.


Asunto(s)
Proteínas de Artrópodos/metabolismo , Venenos de Artrópodos/metabolismo , Artrópodos/fisiología , Inhibidores del Factor Xa/uso terapéutico , Factor Xa/metabolismo , Fibrinolíticos/uso terapéutico , Glándulas Odoríferas/metabolismo , Trombosis/tratamiento farmacológico , Animales , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/uso terapéutico , Coagulación Sanguínea , Carragenina , Clonación Molecular , Humanos , Ratones , Ratones Endogámicos , Pirazoles/uso terapéutico , Piridonas/uso terapéutico , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapéutico , Trombosis/inducido químicamente , Tripsina/metabolismo
9.
Toxins (Basel) ; 8(8)2016 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-27455325

RESUMEN

Kazal-type serine proteinase inhibitors are found in a large number of living organisms and play crucial roles in various biological and physiological processes. Although some Kazal-type serine protease inhibitors have been identified in leeches, none has been reported from Hirudinaria manillensis, which is a medically important leech. In this study, a novel Kazal-type trypsin inhibitor was isolated from leech H. manillensis, purified and named as bdellin-HM based on the sequence similarity with bdellin-KL and bdellin B-3. Structural analysis revealed that bdellin-HM was a 17,432.8 Da protein and comprised of 149 amino acid residues with six cysteines forming three intra-molecular disulfide bonds. Bdellin-HM showed similarity with the Kazal-type domain and may belong to the group of "non-classical" Kazal inhibitors according to its Cys(I)-Cys(II) disulfide bridge position. Bdellin-HM had no inhibitory effect on elastase, chymotrypsin, kallikrein, Factor (F) XIIa, FXIa, FXa, thrombin and plasmin, but it showed a potent ability to inhibit trypsin with an inhibition constant (Ki) of (8.12 ± 0.18) × 10(-9) M. These results suggest that bdellin-HM from the leech of H. manillensis plays a potent and specific inhibitory role towards trypsin.


Asunto(s)
Sanguijuelas/química , Compuestos Orgánicos/aislamiento & purificación , Inhibidores de Tripsina/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Peso Molecular , Compuestos Orgánicos/química , Compuestos Orgánicos/farmacología , Dominios Proteicos , Relación Estructura-Actividad , Tripsina/metabolismo , Inhibidores de Tripsina/química , Inhibidores de Tripsina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA