Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(5): 4533-4540, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38241023

RESUMEN

We investigate the full control over the orientation of a planar non-symmetric molecule by using moderate and weak electric fields. Quantum optimal control techniques allow us to orient any axis of 6-chloropyridazine-3-carbonitrile, which is taken as prototype example here, along the electric field direction. We perform a detailed analysis by exploring the impact on the molecular orientation of the time scale and strength of the control field. The underlying physical phenomena allowing for the control of the orientation are interpreted in terms of the frequencies contributing to the field-dressed dynamics and to the driving field by a spectral analysis.

2.
J Chem Phys ; 150(8): 084305, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30823746

RESUMEN

We explore the effects of correlation on the ground-state energies and on photoionization dynamics in atomic Be and Ne. We apply the time-dependent restricted-active-space self-consistent-field method for several excitation schemes and active orbital spaces with and without a dynamic core to address the effects systematically at different levels of approximation. For the ground-state many-electron wave functions, we compare the correlation energies with entropic measures of entanglement. A larger magnitude of the correlation energy does not always correspond to a larger value of the considered entanglement measures. To evaluate the impact of correlation in a process involving continua, we consider photoionization by attosecond pulses. The photoelectron spectra may be significantly affected by including a dynamical core.

3.
Phys Rev Lett ; 121(16): 163405, 2018 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-30387663

RESUMEN

Coherent control of reactive atomic and molecular collision processes remains elusive experimentally due to quantum interference-based requirements. Here, with insights from symmetry conditions, a viable method for controlling Penning and associative ionization in atomic collisions is proposed. Computational applications to He^{*}(^{3}S)-Li(^{2}S) and Ne^{*}(^{3}P_{2})-Ar(^{1}S_{0}) show extensive control over the ionization processes under experimentally feasible conditions.

4.
J Chem Phys ; 139(23): 234313, 2013 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-24359373

RESUMEN

The mixed-field orientation of an asymmetric-rotor molecule with its permanent dipole moment nonparallel to the principal axes of polarizability is investigated experimentally and theoretically. We find that for the typical case of a strong, nonresonant laser field and a weak static electric field complete 3D orientation is induced if the laser field is elliptically polarized and if its major and minor polarization axes are not parallel to the static field. For a linearly polarized laser field solely the dipole moment component along the most polarizable axis of the molecule is relevant resulting in 1D orientation even when the laser polarization and the static field are nonparallel. Simulations show that the dipole moment component perpendicular to the most-polarizable axis becomes relevant in a strong dc electric field combined with the laser field. This offers an alternative approach to 3D orientation by combining a linearly polarized laser field and a strong dc electric field arranged at an angle equal to the angle between the most polarizable axis of the molecule and its permanent dipole moment.

5.
Phys Rev Lett ; 108(19): 193001, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-23003030

RESUMEN

We have experimentally and theoretically investigated the mixed-field orientation of rotational-state-selected OCS molecules and achieved strong degrees of alignment and orientation. The applied moderately intense nanosecond laser pulses are long enough to adiabatically align molecules. However, in combination with a weak dc electric field, the same laser pulses result in nonadiabatic dynamics of the mixed-field orientation. These observations are fully explained by calculations employing both adiabatic and nonadiabatic (time-dependent) models.

6.
Phys Rev E ; 101(6-1): 063305, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32688467

RESUMEN

In this work, we use the finite differences in time domain (FDTD) numerical method to compute and assess the validity of Hopf solutions, or hopfions, for the electromagnetic field equations. In these solutions, field lines form closed loops characterized by different knot topologies which are preserved during their time evolution. Hopfions have been studied extensively in the past from an analytical perspective but never, to the best of our knowledge, from a numerical approach. The implementation and validation of this technique eases the study of more complex cases of this phenomena; e.g., how these fields could interact with materials (e.g., anisotropic or nonlinear), their coupling with other physical systems (e.g., plasmas), and also opens the path on their artificial generation by different means (e.g., antenna arrays or lasers).

7.
Nat Chem ; 10(12): 1190-1195, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30297754

RESUMEN

A prerequisite to gain a complete understanding of the most basic aspects of chemical reactions is the ability to perform experiments with complete control over the reactant degrees of freedom. By controlling these, details of a reaction mechanism can be investigated and ultimately manipulated. Here, we present a study of chemi-ionization-a fundamental energy-transfer reaction-under completely controlled conditions. The collision energy of the reagents was tuned from 0.02 K to 1,000 K, with the orientation of the excited Ne atom relative to Ar fully specified by an external magnetic field. Chemi-ionization of Ne(3P2) and Ar in these conditions enables a detailed investigation of how the reaction proceeds, and provides us with a means to control the branching ratio between the two possible reaction outcomes. The merged-beam experimental technique used here allows access to a low-energy regime in which the atoms dynamically reorient into a favourable configuration for reaction, irrespective of their initial orientations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA