Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 20(6): 4625-4630, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32407633

RESUMEN

Van der Waals (vdW) heterostructures have attracted great interest because of their rich material combinations. The discovery of two-dimensional magnets has provided a new platform for magnetic vdW heterointerfaces; however, research on magnetic vdW heterointerfaces has been limited to those with ferromagnetic surfaces. Here, we report a magnetic vdW heterointerface using layered intralayer-antiferromagnetic MPSe3 (M = Mn, Fe) and monolayer transition-metal dichalcogenides (TMDs). We found an anomalous upshift of the excitonic peak in monolayer TMDs below the antiferromagnetic transition temperature in the MPSe3, capturing a signature of the interlayer exciton-magnon coupling. This is a concept extended from single materials to heterointerfaces. Moreover, this coupling strongly depends on the in-plane magnetic structure and stacking direction, showing its sensitivity to their magnetic interfaces. Our finding offers an opportunity to investigate interactions between elementary excitations in different materials across interfaces and to search for new functions of magnetic vdW heterointerfaces.

2.
Nat Mater ; 16(12): 1193-1197, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28967914

RESUMEN

The spontaneous Hall effect driven by the quantum Berry phase (which serves as an internal magnetic flux in momentum space) manifests the topological nature of quasiparticles and can be used to control the information flow, such as spin and valley. We report a Hall effect of excitons (fundamental composite particles of electrons and holes that dominate optical responses in semiconductors). By polarization-resolved photoluminescence mapping, we directly observed the Hall effect of excitons in monolayer MoS2 and valley-selective spatial transport of excitons on a micrometre scale. The Hall angle of excitons is found to be much larger than that of single electrons in monolayer MoS2 (ref. ), implying that the quantum transport of the composite particles is significantly affected by their internal structures. The present result not only poses a fundamental problem of the Hall effect in composite particles, but also offers a route to explore exciton-based valleytronics in two-dimensional materials.

3.
Nano Lett ; 16(3): 2061-5, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26841275

RESUMEN

We report an electric field tuning of the thermopower in ultrathin WSe2 single crystals over a wide range of carrier concentration by using electric double-layer (EDL) technique. We succeeded in the optimization of power factor not only in the hole but also in the electron side, which has never been chemically accessed. The maximized values of power factor are one-order larger than that obtained by changing chemical composition, reflecting the clean nature of electrostatic doping.

4.
Science ; 372(6537): 68-72, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33795452

RESUMEN

Van der Waals interfaces can be formed by layer stacking without regard to lattice constants or symmetries of individual building blocks. We engineered the symmetry of a van der Waals interface of tungsten selenide and black phosphorus and realized in-plane electronic polarization that led to the emergence of a spontaneous photovoltaic effect. Spontaneous photocurrent was observed along the polar direction and was absent in the direction perpendicular to it. The observed spontaneous photocurrent was explained by a quantum-mechanical shift current that reflects the geometrical and topological electronic nature of this emergent interface. The present results offer a simple guideline for symmetry engineering that is applicable to a variety of van der Waals interfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA