Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pharmacol ; 89(5): 560-74, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26921399

RESUMEN

All-trans-retinoic acid (atRA) is the active metabolite of vitamin A. The liver is the main storage organ of vitamin A, but activation of the retinoic acid receptors (RARs) in mouse liver and in human liver cell lines has also been shown. AlthoughatRA treatment improves mitochondrial function in skeletal muscle in rodents, its role in modulating mitochondrial function in the liver is controversial, and little data are available regarding the human liver. The aim of this study was to determine whetheratRA regulates hepatic mitochondrial activity.atRA treatment increased the mRNA and protein expression of multiple components of mitochondrialß-oxidation, tricarboxylic acid (TCA) cycle, and respiratory chain. Additionally,atRA increased mitochondrial biogenesis in human hepatocytes and in HepG2 cells with and without lipid loading based on peroxisome proliferator activated receptor gamma coactivator 1αand 1ßand nuclear respiratory factor 1 mRNA and mitochondrial DNA quantification.atRA also increasedß-oxidation and ATP production in HepG2 cells and in human hepatocytes. Knockdown studies of RARα, RARß, and PPARδrevealed that the enhancement of mitochondrial biogenesis andß-oxidation byatRA requires peroxisome proliferator activated receptor delta. In vivo in mice,atRA treatment increased mitochondrial biogenesis markers after an overnight fast. Inhibition ofatRA metabolism by talarozole, a cytochrome P450 (CYP) 26 specific inhibitor, increased the effects ofatRA on mitochondrial biogenesis markers in HepG2 cells and in vivo in mice. These studies show thatatRA regulates mitochondrial function and lipid metabolism and that increasingatRA concentrations in human liver via CYP26 inhibition may increase mitochondrial biogenesis and fatty acidß-oxidation and provide therapeutic benefit in diseases associated with mitochondrial dysfunction.


Asunto(s)
Mitocondrias Hepáticas/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , PPAR delta/agonistas , Transducción de Señal , Tretinoina/metabolismo , Regulación hacia Arriba , Animales , Benzotiazoles/farmacología , Células Cultivadas , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Hepatocitos/metabolismo , Humanos , Masculino , Ratones , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/enzimología , Biogénesis de Organelos , PPAR delta/antagonistas & inhibidores , PPAR delta/genética , PPAR delta/metabolismo , Interferencia de ARN , Receptores de Ácido Retinoico/agonistas , Receptores de Ácido Retinoico/antagonistas & inhibidores , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Ácido Retinoico 4-Hidroxilasa , Receptor alfa de Ácido Retinoico , Triazoles/farmacología , Regulación hacia Arriba/efectos de los fármacos
2.
Biol Reprod ; 95(4): 81, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27488029

RESUMEN

Retinoic acid (RA), the active metabolite of vitamin A, is known to be required for the differentiation of spermatogonia. The first round of spermatogenesis initiates in response to RA and occurs in patches along the length of the seminiferous tubule. However, very little is known about the individual differentiating spermatogonial populations and their progression through the cell cycle due to the heterogeneous nature of the onset of spermatogenesis. In this study, we utilized WIN 18,446 and RA as tools to generate testes enriched with different populations of spermatogonia to further investigate 1) the undifferentiated to differentiating spermatogonial transition, 2) the progression of the differentiating spermatogonia through the cell cycle, and 3) Sertoli cell number in response to altered RA levels. WIN 18,446/RA-treated neonatal mice were used to determine when synchronous S phases occurred in the differentiating spermatogonial population following treatment. Five differentiating spermatogonial S phase windows were identified between spermatogonial differentiation and formation of preleptotene spermatocytes. In addition, a slight increase in Sertoli cell number was observed following RA treatment, possibly implicating a role for RA in Sertoli cell cycle progression. This study has enhanced our understanding of the spermatogonial populations present in the neonatal testis during the onset of spermatogenesis by mapping the cell cycle kinetics of both the undifferentiated and the differentiating spermatogonial populations and identifying the precise timing of when specific individual differentiating spermatogonial populations are enriched within the testis following synchrony, thus providing an essential tool for further study of the differentiating spermatogonia.


Asunto(s)
Espermatogénesis/efectos de los fármacos , Espermatogonias/efectos de los fármacos , Tretinoina/farmacología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Recién Nacidos , Biomarcadores/metabolismo , Ciclo Celular/efectos de los fármacos , Ciclo Celular/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Diaminas/farmacología , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Microscopía Fluorescente , Túbulos Seminíferos/metabolismo , Células de Sertoli/citología , Células de Sertoli/efectos de los fármacos , Transducción de Señal , Espermatogénesis/fisiología , Espermatogonias/citología , Espermatogonias/fisiología , Testículo/citología , Testículo/efectos de los fármacos , Testículo/fisiología , Tretinoina/fisiología
3.
Biol Reprod ; 93(1): 19, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26040672

RESUMEN

The active metabolite of vitamin A, retinoic acid (RA), is known to be essential for spermatogenesis. Changes to RA levels within the seminiferous epithelium can alter the development of male germ cells, including blocking their differentiation completely. Excess RA has been shown to cause germ cell death in both neonatal and adult animals, yet the cells capable of degrading RA within the testis have yet to be investigated. One previous study alluded to a requirement for one of the RA degrading enzymes, CYP26B1, in Sertoli cells but no data exist to determine whether germ cells possess the ability to degrade RA. To bridge this gap, the roles of CYP26A1 and CYP26B1 within the seminiferous epithelium were investigated by creating single and dual conditional knockouts of these enzymes in either Sertoli or germ cells. Analysis of these knockout models revealed that deletion of both Cyp26a1 and Cyp26b1 in either cell type resulted in increased vacuolization within the seminiferous tubules, delayed spermatid release, and an increase in the number of STRA8-positive spermatogonia, but spermatozoa were still produced and the animals were found to be fertile. However, elimination of CYP26B1 activity within both germ and Sertoli cells resulted in severe male subfertility, with a loss of advanced germ cells from the seminiferous epithelium. These data indicate that CYP26 activity within either Sertoli or germ cells is essential for the normal progression of spermatogenesis and that its loss can result in reduced male fertility.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Epitelio Seminífero/enzimología , Espermatogénesis/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Sistema Enzimático del Citocromo P-450/genética , Células Germinativas/metabolismo , Masculino , Ratones , Ratones Noqueados , Ácido Retinoico 4-Hidroxilasa , Células de Sertoli/metabolismo , Espermatogonias/metabolismo , Espermatozoides/metabolismo
4.
J Bone Miner Res ; 34(1): 135-144, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30321475

RESUMEN

Developing novel approaches to treat skeletal disorders requires an understanding of how critical molecular factors regulate osteoblast differentiation and bone remodeling. We have reported that (1) retinoic acid receptor-related orphan receptor beta (Rorß) is upregulated in bone samples isolated from aged mice and humans in vivo; (2) Rorß expression is inhibited during osteoblastic differentiation in vitro; and (3) genetic deletion of Rorß in mice results in preservation of bone mass during aging. These data establish that Rorß inhibits osteogenesis and that strict control of Rorß expression is essential for bone homeostasis. Because microRNAs (miRNAs) are known to play important roles in the regulation of gene expression in bone, we explored whether a predicted subset of nine miRNAs regulates Rorß expression during both osteoblast differentiation and aging. Mouse osteoblastic cells were differentiated in vitro and assayed for Rorß and miRNA expression. As Rorß levels declined with differentiation, the expression of many of these miRNAs, including miR-219a-5p, was increased. We further demonstrated that miR-219a-5p was decreased in bone samples from old (24-month) mice, as compared with young (6-month) mice, concomitant with increased Rorß expression. Importantly, we also found that miR-219a-5p expression was decreased in aged human bone biopsies compared with young controls, demonstrating that this phenomenon also occurs in aging bone in humans. Inhibition of miR-219a-5p in mouse calvarial osteoblasts led to increased Rorß expression and decreased alkaline phosphatase expression and activity, whereas a miR-219a-5p mimic decreased Rorß expression and increased osteogenic activity. Finally, we demonstrated that miR-219a-5p physically interacts with Rorß mRNA in osteoblasts, defining Rorß as a true molecular target of miR-219a-5p. Overall, our findings demonstrate that miR-219a-5p is involved in the regulation of Rorß in both mouse and human bone. © 2018 American Society for Bone and Mineral Research.


Asunto(s)
Envejecimiento , Diferenciación Celular , Regulación de la Expresión Génica , MicroARNs/metabolismo , Miembro 2 del Grupo F de la Subfamilia 1 de Receptores Nucleares/biosíntesis , Osteoblastos/metabolismo , Osteoporosis/metabolismo , Animales , Humanos , Ratones , MicroARNs/genética , Miembro 2 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Osteoblastos/patología , Osteoporosis/genética , Osteoporosis/patología
5.
J Bone Miner Res ; 33(4): 720-731, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29206307

RESUMEN

There is a clinical need to identify new molecular targets for the treatment of osteoporosis, particularly those that simultaneously inhibit bone resorption while stimulating bone formation. We have previously shown in overexpression studies that retinoic acid receptor-related orphan receptor ß (Rorß) suppresses in vitro osteoblast differentiation. In addition, the expression of Rorß is markedly increased in bone marrow-derived mesenchymal stromal cells with aging in both mice and humans. Here we establish a critical role for Rorß in regulating bone metabolism using a combination of in vitro and in vivo studies. We used Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 gene editing to demonstrate that loss of Rorß in osteoblasts enhances Wnt signaling, specifically through increased recruitment of ß-catenin to T-cell factor/lymphoid enhancer factor (Tcf/Lef) DNA binding sites in the promoters of the Wnt target genes Tcf7 and Opg. This resulted in increased osteogenic gene expression and suppressed osteoclast formation through increased osteoprotegerin (OPG) secretion in Rorß-deficient cells. Consistent with our in vitro data, genetic deletion of Rorß in both female and male mice resulted in preserved bone mass and microarchitecture with advancing age due to increased bone formation with a concomitant decrease in resorption. The improved skeletal phenotype in the Rorß-/- mice was also associated with increased bone protein levels of TCF7 and OPG. These data demonstrate that loss of Rorß has beneficial skeletal effects by increasing bone formation and decreasing bone resorption, at least in part through ß-catenin-dependent activation of the Wnt pathway. Thus, inhibition of Rorß represents a novel approach to potentially prevent or reverse osteoporosis. © 2017 American Society for Bone and Mineral Research.


Asunto(s)
Resorción Ósea/metabolismo , Diferenciación Celular , Miembro 2 del Grupo F de la Subfamilia 1 de Receptores Nucleares/deficiencia , Osteoblastos/metabolismo , Osteogénesis , Vía de Señalización Wnt , Animales , Resorción Ósea/genética , Resorción Ósea/patología , Resorción Ósea/prevención & control , Línea Celular , Ratones , Ratones Noqueados , Osteoblastos/patología
6.
Nat Med ; 24(8): 1246-1256, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29988130

RESUMEN

Physical function declines in old age, portending disability, increased health expenditures, and mortality. Cellular senescence, leading to tissue dysfunction, may contribute to these consequences of aging, but whether senescence can directly drive age-related pathology and be therapeutically targeted is still unclear. Here we demonstrate that transplanting relatively small numbers of senescent cells into young mice is sufficient to cause persistent physical dysfunction, as well as to spread cellular senescence to host tissues. Transplanting even fewer senescent cells had the same effect in older recipients and was accompanied by reduced survival, indicating the potency of senescent cells in shortening health- and lifespan. The senolytic cocktail, dasatinib plus quercetin, which causes selective elimination of senescent cells, decreased the number of naturally occurring senescent cells and their secretion of frailty-related proinflammatory cytokines in explants of human adipose tissue. Moreover, intermittent oral administration of senolytics to both senescent cell-transplanted young mice and naturally aged mice alleviated physical dysfunction and increased post-treatment survival by 36% while reducing mortality hazard to 65%. Our study provides proof-of-concept evidence that senescent cells can cause physical dysfunction and decreased survival even in young mice, while senolytics can enhance remaining health- and lifespan in old mice.


Asunto(s)
Dasatinib/farmacología , Longevidad/efectos de los fármacos , Quercetina/farmacología , Tejido Adiposo/metabolismo , Animales , Trasplante de Células , Senescencia Celular/efectos de los fármacos , Citocinas/metabolismo , Dieta Alta en Grasa , Mediadores de Inflamación/metabolismo , Ratones Endogámicos C57BL , Estrés Fisiológico/efectos de los fármacos , Análisis de Supervivencia
7.
Nat Med ; 23(9): 1072-1079, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28825716

RESUMEN

Aging is associated with increased cellular senescence, which is hypothesized to drive the eventual development of multiple comorbidities. Here we investigate a role for senescent cells in age-related bone loss through multiple approaches. In particular, we used either genetic (i.e., the INK-ATTAC 'suicide' transgene encoding an inducible caspase 8 expressed specifically in senescent cells) or pharmacological (i.e., 'senolytic' compounds) means to eliminate senescent cells. We also inhibited the production of the proinflammatory secretome of senescent cells using a JAK inhibitor (JAKi). In aged (20- to 22-month-old) mice with established bone loss, activation of the INK-ATTAC caspase 8 in senescent cells or treatment with senolytics or the JAKi for 2-4 months resulted in higher bone mass and strength and better bone microarchitecture than in vehicle-treated mice. The beneficial effects of targeting senescent cells were due to lower bone resorption with either maintained (trabecular) or higher (cortical) bone formation as compared to vehicle-treated mice. In vitro studies demonstrated that senescent-cell conditioned medium impaired osteoblast mineralization and enhanced osteoclast-progenitor survival, leading to increased osteoclastogenesis. Collectively, these data establish a causal role for senescent cells in bone loss with aging, and demonstrate that targeting these cells has both anti-resorptive and anabolic effects on bone. Given that eliminating senescent cells and/or inhibiting their proinflammatory secretome also improves cardiovascular function, enhances insulin sensitivity, and reduces frailty, targeting this fundamental mechanism to prevent age-related bone loss suggests a novel treatment strategy not only for osteoporosis, but also for multiple age-related comorbidities.


Asunto(s)
Huesos/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Quinasas Janus/antagonistas & inhibidores , Osteoblastos/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Osteocitos/efectos de los fármacos , Osteoporosis/metabolismo , Pirazoles/farmacología , Absorciometría de Fotón , Animales , Apoptosis/genética , Huesos/metabolismo , Hueso Esponjoso/efectos de los fármacos , Hueso Esponjoso/metabolismo , Caspasa 8/genética , Diferenciación Celular , Senescencia Celular/genética , Hueso Cortical/efectos de los fármacos , Hueso Cortical/metabolismo , Medios de Cultivo Condicionados , Citometría de Flujo , Perfilación de la Expresión Génica , Técnicas In Vitro , Ratones , Ratones Transgénicos , Nitrilos , Osteoblastos/citología , Osteoclastos/citología , Osteoporosis/genética , Pirimidinas , Reacción en Cadena en Tiempo Real de la Polimerasa , Soporte de Peso , beta-Galactosidasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA