Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioessays ; 46(3): e2300173, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38161246

RESUMEN

Endosteal stem cells are a subclass of bone marrow skeletal stem cell populations that are particularly important for rapid bone formation occurring in growth and regeneration. These stem cells are strategically located near the bone surface in a specialized microenvironment of the endosteal niche. These stem cells are abundant in young stages but eventually depleted and replaced by other stem cell types residing in a non-endosteal perisinusoidal niche. Single-cell molecular profiling and in vivo cell lineage analyses play key roles in discovering endosteal stem cells. Importantly, endosteal stem cells can transform into bone tumor-making cells when deleterious mutations occur in tumor suppressor genes. The emerging hypothesis is that osteoblast-chondrocyte transitional identities confer a special subset of endosteal stromal cells with stem cell-like properties, which may make them susceptible for tumorigenic transformation. Endosteal stem cells are likely to represent an important therapeutic target of bone diseases caused by aberrant bone formation.


Asunto(s)
Enfermedades Óseas , Médula Ósea , Humanos , Médula Ósea/metabolismo , Osteogénesis , Osteoblastos/metabolismo , Enfermedades Óseas/metabolismo , Enfermedades Óseas/patología , Células Madre , Células de la Médula Ósea/metabolismo
2.
J Biol Chem ; 299(6): 104805, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37172728

RESUMEN

Bone development starts with condensations of undifferentiated mesenchymal cells that set a framework for future bones within the primordium. In the endochondral pathway, mesenchymal cells inside the condensation differentiate into chondrocytes and perichondrial cells in a SOX9-dependent mechanism. However, the identity of mesenchymal cells outside the condensation and how they participate in developing bones remain undefined. Here we show that mesenchymal cells surrounding the condensation contribute to both cartilage and perichondrium, robustly generating chondrocytes, osteoblasts, and marrow stromal cells in developing bones. Single-cell RNA-seq analysis of Prrx1-cre-marked limb bud mesenchymal cells at E11.5 reveals that Notch effector Hes1 is expressed in a mutually exclusive manner with Sox9 that is expressed in pre-cartilaginous condensations. Analysis of a Notch signaling reporter CBF1:H2B-Venus reveals that peri-condensation mesenchymal cells are active for Notch signaling. In vivo lineage-tracing analysis using Hes1-creER identifies that Hes1+ early mesenchymal cells surrounding the SOX9+ condensation at E10.5 contribute to both cartilage and perichondrium at E13.5, subsequently becoming growth plate chondrocytes, osteoblasts of trabecular and cortical bones, and marrow stromal cells in postnatal bones. In contrast, Hes1+ cells in the perichondrium at E12.5 or E14.5 do not generate chondrocytes within cartilage, contributing to osteoblasts and marrow stromal cells only through the perichondrial route. Therefore, Hes1+ peri-condensation mesenchymal cells give rise to cells of the skeletal lineage through cartilage-dependent and independent pathways, supporting the theory that early mesenchymal cells outside the condensation also play important roles in early bone development.


Asunto(s)
Desarrollo Óseo , Huesos , Cartílago , Diferenciación Celular , Linaje de la Célula , Condrocitos , Células Madre Mesenquimatosas , Factor de Transcripción HES-1 , Animales , Ratones , Huesos/citología , Cartílago/citología , Cartílago/metabolismo , Condrocitos/citología , Condrocitos/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Factor de Transcripción HES-1/metabolismo , Células del Estroma/citología , Células del Estroma/metabolismo , Receptores Notch/metabolismo
3.
Calcif Tissue Int ; 115(2): 101-116, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38833001

RESUMEN

Primary failure of eruption (PFE) is a rare disorder that is characterized by the inability of a molar tooth/teeth to erupt to the occlusal plane or to normally react to orthodontic force. This condition is related to hereditary factors and has been extensively researched over many years. However, the etiological mechanisms of pathogenesis are still not fully understood. Evidence from studies on PFE cases has shown that PFE patients may carry parathyroid hormone 1 receptor (PTH1R) gene mutations, and genetic detection can be used to diagnose PFE at an early stage. PTH1R variants can lead to altered protein structure, impaired protein function, and abnormal biological activities of the cells, which may ultimately impact the behavior of teeth, as observed in PFE. Dental follicle cells play a critical role in tooth eruption and root development and are regulated by parathyroid hormone-related peptide (PTHrP)-PTH1R signaling in their differentiation and other activities. PTHrP-PTH1R signaling also regulates the activity of osteoblasts, osteoclasts and odontoclasts during tooth development and eruption. When interference occurs in the PTHrP-PTH1R signaling pathway, the normal function of dental follicles and bone remodeling are impaired. This review provides an overview of PTH1R variants and their correlation with PFE, and highlights that a disruption of PTHrP-PTH1R signaling impairs the normal process of tooth development and eruption, thus providing insight into the underlying mechanisms related to PTH1R and its role in driving PFE.


Asunto(s)
Receptor de Hormona Paratiroídea Tipo 1 , Erupción Dental , Receptor de Hormona Paratiroídea Tipo 1/genética , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Humanos , Erupción Dental/genética , Erupción Dental/fisiología , Mutación , Diente no Erupcionado/genética , Animales , Enfermedades Dentales
4.
Nature ; 563(7730): 254-258, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30401834

RESUMEN

Skeletal stem cells regulate bone growth and homeostasis by generating diverse cell types, including chondrocytes, osteoblasts and marrow stromal cells. The emerging concept postulates that there exists a distinct type of skeletal stem cell that is closely associated with the growth plate1-4, which is a type of cartilaginous tissue that has critical roles in bone elongation5. The resting zone maintains the growth plate by expressing parathyroid hormone-related protein (PTHrP), which interacts with Indian hedgehog (Ihh) that is released from the hypertrophic zone6-10, and provides a source of other chondrocytes11. However, the identity of skeletal stem cells and how they are maintained in the growth plate are unknown. Here we show, in a mouse model, that skeletal stem cells are formed among PTHrP-positive chondrocytes within the resting zone of the postnatal growth plate. PTHrP-positive chondrocytes expressed a panel of markers for skeletal stem and progenitor cells, and uniquely possessed the properties of skeletal stem cells in cultured conditions. Cell-lineage analysis revealed that PTHrP-positive chondrocytes in the resting zone continued to form columnar chondrocytes in the long term; these chondrocytes underwent hypertrophy, and became osteoblasts and marrow stromal cells beneath the growth plate. Transit-amplifying chondrocytes in the proliferating zone-which was concertedly maintained by a forward signal from undifferentiated cells (PTHrP) and a reverse signal from hypertrophic cells (Ihh)-provided instructive cues to maintain the cell fates of PTHrP-positive chondrocytes in the resting zone. Our findings unravel a type of somatic stem cell that is initially unipotent and acquires multipotency at the post-mitotic stage, underscoring the malleable nature of the skeletal cell lineage. This system provides a model in which functionally dedicated stem cells and their niches are specified postnatally, and maintained throughout tissue growth by a tight feedback regulation system.


Asunto(s)
Placa de Crecimiento/citología , Células Madre/citología , Animales , Linaje de la Célula , Condrocitos/citología , Condrocitos/metabolismo , Placa de Crecimiento/metabolismo , Técnicas In Vitro , Ratones , Osteoblastos/citología , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Nicho de Células Madre , Células Madre/metabolismo , Células del Estroma/citología
5.
Bioessays ; 43(1): e2000202, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33155283

RESUMEN

An emerging concept is that quiescent mature skeletal cells provide an important cellular source for bone regeneration. It has long been considered that a small number of resident skeletal stem cells are solely responsible for the remarkable regenerative capacity of adult bones. However, recent in vivo lineage-tracing studies suggest that all stages of skeletal lineage cells, including dormant pre-adipocyte-like stromal cells in the marrow, osteoblast precursor cells on the bone surface and other stem and progenitor cells, are concomitantly recruited to the injury site and collectively participate in regeneration of the damaged skeletal structure. Lineage plasticity appears to play an important role in this process, by which mature skeletal cells can transform their identities into skeletal stem cell-like cells in response to injury. These highly malleable, long-living mature skeletal cells, readily available throughout postnatal life, might represent an ideal cellular resource that can be exploited for regenerative medicine.


Asunto(s)
Plasticidad de la Célula , Urgencias Médicas , Células de la Médula Ósea , Regeneración Ósea , Diferenciación Celular , Linaje de la Célula , Humanos , Células Madre
6.
Orthod Craniofac Res ; 26 Suppl 1: 29-38, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36714970

RESUMEN

Tooth eruption is a pivotal milestone for children's growth and development. This process involves with the formation of the tooth root, the periodontal ligament (PDL) and the alveolar bone, as the tooth crown penetrates the bone and gingiva to enter the oral cavity. This review aims to outline current knowledge of the adverse dental effects of antiresorptive medications. Recently, paediatric indications for antiresorptive medications, such as bisphosphonates (BPs), have emerged, and these agents are increasingly used in children and adolescents to cure pathological bone resorption associated with bone diseases and cancers. Since tooth eruption is accompanied by osteoclastic bone resorption, it is expected that the administration of antiresorptive medications during this period affects tooth development. Indeed, several articles studying human patient cohorts and animal models report the dental defects associated with the use of these antiresorptive medications. This review shows the summary of the possible factors related to tooth eruption and introduces the future research direction to understand the mechanisms underlying the dental defects caused by antiresorptive medications.


Asunto(s)
Resorción Ósea , Erupción Dental , Animales , Humanos , Niño , Adolescente , Raíz del Diente , Ligamento Periodontal , Difosfonatos/efectos adversos
7.
Genesis ; 60(8-9): e23495, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35916433

RESUMEN

The periodontium is comprised of multiple units of mineralized and nonmineralized tissues including the cementum on the root surface, the alveolar bone, periodontal ligament (PDL), and the gingiva. PDL contains a variety of cell populations including mesenchymal stem/progenitor cells (MSCs) termed PDLSCs, which contribute to periodontal regeneration. Recent studies utilizing mouse genetic models shed light on the identities of these mesenchymal progenitors in their native environment, particularly regarding how they contribute to homeostasis and repair of the periodontium. The current concept is that mesenchymal progenitors in the PDL are localized to the perivascular niche. Single-cell RNA sequencing (scRNA-seq) analyses reveal heterogeneity and cell-type specific markers of cells in the periodontium, as well as their developmental relationship with precursor cells in the dental follicle. The characteristics of PDLSCs and their diversity in vivo are now beginning to be unraveled thanks to insights from mouse genetic models and scRNA-seq analyses, which aid to uncover the fundamental properties of stem cells in the human PDL. The new knowledge will be highly important for developing more effective stem cell-based regenerative therapies to repair periodontal tissues in the future.


Asunto(s)
Células Madre Mesenquimatosas , Periodoncio , Animales , Células Cultivadas , Humanos , Ratones , Ligamento Periodontal , Células Madre
8.
Proc Natl Acad Sci U S A ; 116(2): 575-580, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30509999

RESUMEN

Formation of functional skeletal tissues requires highly organized steps of mesenchymal progenitor cell differentiation. The dental follicle (DF) surrounding the developing tooth harbors mesenchymal progenitor cells for various differentiated cells constituting the tooth root-bone interface and coordinates tooth eruption in a manner dependent on signaling by parathyroid hormone-related peptide (PTHrP) and the PTH/PTHrP receptor (PPR). However, the identity of mesenchymal progenitor cells in the DF and how they are regulated by PTHrP-PPR signaling remain unknown. Here, we show that the PTHrP-PPR autocrine signal maintains physiological cell fates of DF mesenchymal progenitor cells to establish the functional periodontal attachment apparatus and orchestrates tooth eruption. A single-cell RNA-seq analysis revealed cellular heterogeneity of PTHrP+ cells, wherein PTHrP+ DF subpopulations abundantly express PPR. Cell lineage analysis using tamoxifen-inducible PTHrP-creER mice revealed that PTHrP+ DF cells differentiate into cementoblasts on the acellular cementum, periodontal ligament cells, and alveolar cryptal bone osteoblasts during tooth root formation. PPR deficiency induced a cell fate shift of PTHrP+ DF mesenchymal progenitor cells to nonphysiological cementoblast-like cells precociously forming the cellular cementum on the root surface associated with up-regulation of Mef2c and matrix proteins, resulting in loss of the proper periodontal attachment apparatus and primary failure of tooth eruption, closely resembling human genetic conditions caused by PPR mutations. These findings reveal a unique mechanism whereby proper cell fates of mesenchymal progenitor cells are tightly maintained by an autocrine system mediated by PTHrP-PPR signaling to achieve functional formation of skeletal tissues.


Asunto(s)
Comunicación Autocrina/fisiología , Células Madre Mesenquimatosas/metabolismo , Proteína Relacionada con la Hormona Paratiroidea/genética , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Transducción de Señal/fisiología , Erupción Dental/fisiología , Animales , Diferenciación Celular/fisiología , Saco Dental/citología , Saco Dental/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , Ratones , Ratones Transgénicos , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Receptor de Hormona Paratiroídea Tipo 1/genética
9.
Biocell ; 46(5): 1157-1162, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35475293

RESUMEN

Single-cell sequencing technologies have rapidly progressed in recent years, and been applied to characterize stem cells in a number of organs. Somatic (postnatal) stem cells are generally identified using combinations of cell surface markers and transcription factors. However, it has been challenging to define micro-heterogeneity within "stem cell" populations, each of which stands at a different level of differentiation. As stem cells become defined at a single-cell level, their differentiation path becomes clearly defined. Here, this viewpoint discusses the potential synergy of single-cell sequencing analyses with in vivo lineage-tracing approaches, with an emphasis on practical considerations in stem cell biology.

10.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35887171

RESUMEN

The cranial base is formed by endochondral ossification and functions as a driver of anteroposterior cranial elongation and overall craniofacial growth. The cranial base contains the synchondroses that are composed of opposite-facing layers of resting, proliferating and hypertrophic chondrocytes with unique developmental origins, both in the neural crest and mesoderm. In humans, premature ossification of the synchondroses causes midfacial hypoplasia, which commonly presents in patients with syndromic craniosynostoses and skeletal Class III malocclusion. Major signaling pathways and transcription factors that regulate the long bone growth plate-PTHrP-Ihh, FGF, Wnt, BMP signaling and Runx2-are also involved in the cranial base synchondrosis. Here, we provide an updated overview of the cranial base synchondrosis and the cell population within, as well as its molecular regulation, and further discuss future research opportunities to understand the unique function of this craniofacial skeletal structure.


Asunto(s)
Condrocitos , Placa de Crecimiento , Condrocitos/metabolismo , Placa de Crecimiento/metabolismo , Cabeza , Humanos , Osteogénesis/fisiología , Base del Cráneo/anomalías
11.
Int J Mol Sci ; 23(14)2022 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-35887221

RESUMEN

The cranial base contains a special type of growth plate termed the synchondrosis, which functions as the growth center of the skull. The synchondrosis is composed of bidirectional opposite-facing layers of resting, proliferating, and hypertrophic chondrocytes, and lacks the secondary ossification center. In long bones, the resting zone of the epiphyseal growth plate houses a population of parathyroid hormone-related protein (PTHrP)-expressing chondrocytes that contribute to the formation of columnar chondrocytes. Whether PTHrP+ chondrocytes in the synchondrosis possess similar functions remains undefined. Using Pthrp-mCherry knock-in mice, we found that PTHrP+ chondrocytes predominantly occupied the lateral wedge-shaped area of the synchondrosis, unlike those in the femoral growth plate that reside in the resting zone within the epiphysis. In vivo cell-lineage analyses using a tamoxifen-inducible Pthrp-creER line revealed that PTHrP+ chondrocytes failed to establish columnar chondrocytes in the synchondrosis. Therefore, PTHrP+ chondrocytes in the synchondrosis do not possess column-forming capabilities, unlike those in the resting zone of the long bone growth plate. These findings support the importance of the secondary ossification center within the long bone epiphysis in establishing the stem cell niche for PTHrP+ chondrocytes, the absence of which may explain the lack of column-forming capabilities of PTHrP+ chondrocytes in the cranial base synchondrosis.


Asunto(s)
Condrocitos , Proteína Relacionada con la Hormona Paratiroidea , Animales , Diferenciación Celular , Condrocitos/metabolismo , Epífisis , Placa de Crecimiento/metabolismo , Ratones , Proteína Relacionada con la Hormona Paratiroidea/genética , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Base del Cráneo/metabolismo
12.
Cell Tissue Res ; 383(2): 603-616, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32803323

RESUMEN

The dental pulp, a non-mineralized connective tissue uniquely encased within the cavity of the tooth, provides a niche for diverse arrays of dental mesenchymal stem cells. Stem cells in the dental pulp, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDs) and stem cells from apical papilla (SCAPs), have been isolated from human tissues with an emphasis on their potential application to regenerative therapies. Recent studies utilizing mouse genetic models shed light on the identities of these mesenchymal progenitor cells derived from neural crest cells (NCCs) in their native conditions, particularly regarding how they contribute to homeostasis and repair of the dental tissue. The current concept is that at least two distinct niches for stem cells exist in the dental pulp, e.g., the perivascular niche and the perineural niche. The precise identities of these stem cells and their niches are now beginning to be unraveled thanks to sophisticated mouse genetic models, which lead to better understanding of the fundamental properties of stem cells in the dental pulp and the apical papilla in humans. The new knowledge will be highly instrumental for developing more effective stem cell-based regenerative therapies to repair teeth in the future.


Asunto(s)
Papila Dental/citología , Pulpa Dental/citología , Modelos Genéticos , Células Madre/citología , Animales , Biomarcadores/metabolismo , Ratones , Nicho de Células Madre
13.
Curr Osteoporos Rep ; 18(3): 189-198, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32172443

RESUMEN

PURPOSE OF REVIEW: Skeletal stem cells (SSCs) are considered to play important roles in bone development and repair. These cells have been historically defined by their in vitro potential for self-renewal and differentiation into "trilineage" cells; however, little is known about their in vivo identity. Here, we discuss recent progress on SSCs and how they potentially contribute to bone development and repair. RECENT FINDINGS: Bone is composed of diverse tissues, which include cartilage and its perichondrium, cortical bone and its periosteum, and bone marrow and its trabecular bone and stromal compartment. We are now at the initial stage of understanding the precise identity of SSCs in each bone tissue. The emerging concept is that functionally dedicated SSCs are encased by their own unique cellular and extracellular matrix microenvironment, and locally support its own compartment. Diverse groups of SSCs are likely to work in concert to achieve development and repair of the highly functional skeletal organ.


Asunto(s)
Células Madre Adultas/citología , Células Madre Adultas/fisiología , Desarrollo Óseo/fisiología , Regeneración Ósea/fisiología , Diferenciación Celular , Adipocitos/citología , Médula Ósea , Células de la Médula Ósea/citología , Hueso Esponjoso/citología , Cartílago/citología , Linaje de la Célula , Condrocitos/citología , Hueso Cortical/citología , Placa de Crecimiento/citología , Humanos , Células Madre Mesenquimatosas/citología , Osteoblastos/citología
14.
Oral Dis ; 26(2): 391-400, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31802584

RESUMEN

OBJECTIVES: Primary failure of eruption (PFE) is a genetic disorder exhibiting the cessation of tooth eruption. Loss-of-function mutations in parathyroid hormone (PTH)/parathyroid hormone-related peptide (PTHrP) receptor (PTH/PTHrP receptor, PPR) were reported as the underlying cause of this disorder in humans. We showed in a PFE mouse model that PTHrP-PPR signaling is responsible for normal dental follicle cell differentiation and tooth eruption. However, the mechanism underlying the eruption defect in PFE remains undefined. In this descriptive study, we aim to chronologically observe tooth eruption and root formation of mouse PFE molars through 3D microCT analyses. SETTING AND SAMPLE POPULATION: Two individuals with PFE were recruited at Showa University. A mouse PFE model was generated by deleting PPR specifically in PTHrP-expressing dental follicle and divided into three groups, PPRfl/fl ;R26RtdTomato/+ (Control), PTHrP-creER;PPRfl/+ ;R26RtdTomato/+ (cHet), and PTHrP-creER;PRRfl/fl ;R26RtdTomato/+ (cKO). MATERIALS AND METHODS: Images from human PFE subjects were acquired by CBCT. All groups of mouse samples were studied at postnatal days 14, 25, 91, and 182 after a tamoxifen pulse at P3, and superimposition of 3D microCT images among three groups was rendered. RESULTS: Mouse and human PFE molars exhibited a similar presentation in the 3D CT analyses. The quantitative analysis in mice demonstrated a statistically significant decrease in the eruption height of cKO first and second molars compared to other groups after postnatal day 25. Additionally, cKO molars demonstrated significantly shortened roots with dilacerations associated with the reduced interradicular bone height. CONCLUSIONS: Mouse PFE molars erupt at a much slower rate compared to normal molars, associated with shortened and dilacerated roots and defective interradicular bones.


Asunto(s)
Diente Molar/anomalías , Receptor de Hormona Paratiroídea Tipo 1/genética , Enfermedades Dentales/genética , Erupción Dental/genética , Diente Primario/anomalías , Animales , Preescolar , Saco Dental/anomalías , Femenino , Humanos , Imagenología Tridimensional , Lactante , Mutación con Pérdida de Función , Masculino , Ratones
15.
Int J Mol Sci ; 20(23)2019 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-31795305

RESUMEN

Growth plate chondrocytes play central roles in the proper development and growth of endochondral bones. Particularly, a population of chondrocytes in the resting zone expressing parathyroid hormone-related protein (PTHrP) is now recognized as skeletal stem cells, defined by their ability to undergo self-renewal and clonally give rise to columnar chondrocytes in the postnatal growth plate. These chondrocytes also possess the ability to differentiate into a multitude of cell types including osteoblasts and bone marrow stromal cells during skeletal development. Using single-cell transcriptomic approaches and in vivo lineage tracing technology, it is now possible to further elucidate their molecular properties and cellular fate changes. By discovering the fundamental molecular characteristics of these cells, it may be possible to harness their functional characteristics for skeletal growth and regeneration. Here, we discuss our current understanding of the molecular signatures defining growth plate chondrocytes.


Asunto(s)
Desarrollo Óseo , Condrocitos/citología , Placa de Crecimiento/citología , Animales , Autorrenovación de las Células , Condrocitos/metabolismo , Placa de Crecimiento/fisiología , Proteínas Hedgehog/metabolismo , Humanos , Osteoblastos/citología , Osteoblastos/metabolismo , Osteogénesis , Proteína Relacionada con la Hormona Paratiroidea/metabolismo
16.
JCI Insight ; 9(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38051593

RESUMEN

The resting zone of the postnatal growth plate is organized by slow-cycling chondrocytes expressing parathyroid hormone-related protein (PTHrP), which include a subgroup of skeletal stem cells that contribute to the formation of columnar chondrocytes. The PTHrP-Indian hedgehog feedback regulation is essential for sustaining growth plate activities; however, molecular mechanisms regulating cell fates of PTHrP+ resting chondrocytes and their eventual transformation into osteoblasts remain largely undefined. Here, in a mouse model, we specifically activated Hedgehog signaling in PTHrP+ resting chondrocytes and traced the fate of their descendants using a tamoxifen-inducible Pthrp-creER line with patched-1-floxed and tdTomato reporter alleles. Hedgehog-activated PTHrP+ chondrocytes formed large, concentric, clonally expanded cell populations within the resting zone ("patched roses") and generated significantly wider columns of chondrocytes, resulting in hyperplasia of the growth plate. Interestingly, Hedgehog-activated PTHrP+ cell descendants migrated away from the growth plate and transformed into trabecular osteoblasts in the diaphyseal marrow space in the long term. Therefore, Hedgehog activation drives resting zone chondrocytes into transit-amplifying states as proliferating chondrocytes and eventually converts these cells into osteoblasts, unraveling a potentially novel Hedgehog-mediated mechanism that facilitates osteogenic cell fates of PTHrP+ skeletal stem cells.


Asunto(s)
Condrocitos , Proteína Relacionada con la Hormona Paratiroidea , Proteína Fluorescente Roja , Ratones , Animales , Condrocitos/metabolismo , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Placa de Crecimiento , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Proteínas Hedgehog/metabolismo
17.
bioRxiv ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39282451

RESUMEN

Alveolar bone supports and anchors teeth. The parathyroid hormone-related protein (PTHrP) pathway plays a key role in alveolar bone biology. Salt inducible kinases (SIKs) are important downstream regulators of PTH/PTHrP signaling in the appendicular skeleton where SIK inhibition increases bone formation and trabecular bone mass. However, the function of these kinases in alveolar bone remains unknown. Here, we report a critical role for SIK2/SIK3 in alveolar bone development, homeostasis, and socket healing after tooth extraction. Inducible SIK2/SIK3 deletion led to dramatic alveolar bone defects without changes in tooth eruption. Ablating these kinases impairs alveolar bone formation due to disrupted osteoblast maturation, a finding associated with ectopic periostin expression by fibrous cells in regions of absent alveolar bone at steady state and following molar extraction. Distinct phenotypic consequences of SIK2/SIK3 deletion in appendicular versus craniofacial bones prompted us to identify a specific transcriptomic signature in alveolar versus long bone osteoblasts. Thus, SIK2/SIK3 deletion illuminates a key role for these kinases in alveolar bone biology and highlights the emerging concept that different osteoblast subsets utilize unique genetic programs. Summary statement: SIK2/SIK3 deletion in alveolar bone reduces bone formation and mass by impairing osteoblast maturation, unlike in long bones, where it increases bone formation and mass.

18.
Am J Pathol ; 180(2): 811-8, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22155108

RESUMEN

Bone marrow (BM) fibrosis is a feature of severe hyperparathyroidism. Consistent with this observation, mice expressing constitutively active parathyroid hormone (PTH)/PTH-related peptide receptors (PPR) in osteoblasts (PPR*Tg) display BM fibrosis. To obtain insight into the nature of BM fibrosis in such a model, a double-mutant mouse expressing constitutively active PPR and green fluorescent protein (GFP) under the control of the type I collagen promoter (PPR*Tg/GFP) was generated. Confocal microscopy and flow cytometry revealed the presence of a cell population expressing GFP (GFP(+)) that was also positive for the hematopoietic marker CD45 in the BM of both PPR*Tg/GFP and control animals. This cell population was expanded in PPR*Tg/GFP. The existence of cells expressing both type I collagen and CD45 in the adult BM was confirmed by IHC and fluorescence-activated cell sorting. An analysis of total RNA extracted from sorted GFP(+)CD45(+) cells showed that these cells produced type I collagen and PTH/PTH-related peptide receptor and receptor activator for NF-κB mRNAs, further supporting their features of being both mesenchymal and hematopoietic lineages. Similar cells, known as fibrocytes, are also present in pathological fibroses. Our findings, thus, indicate that the BM is a permissive microenvironment for the differentiation of fibrocyte-like cells and raise the possibility that these cells could contribute to the pathogenesis of BM fibrosis.


Asunto(s)
Biomarcadores/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Mielofibrosis Primaria/patología , Animales , Médula Ósea/metabolismo , Diferenciación Celular , Colágeno Tipo I , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Transgénicos , Osteoblastos/metabolismo , Hormona Paratiroidea/farmacología , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Mielofibrosis Primaria/metabolismo , Receptor de Hormona Paratiroídea Tipo 1/metabolismo
19.
J Bone Metab ; 30(4): 297-310, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38073263

RESUMEN

Orthodontic tooth movement (OTM) is achieved by the simultaneous activation of bone resorption by osteoclasts and bone formation by osteoblasts. When orthodontic forces are applied, osteoclast-mediated bone resorption occurs in the alveolar bone on the compression side, creating space for tooth movement. Therefore, controlling osteoclastogenesis is the fundamental tenet of orthodontic treatment. Orthodontic forces are sensed by osteoblast lineage cells such as periodontal ligament (PDL) cells and osteocytes. Of several cytokines produced by these cells, the most important cytokine promoting osteoclastogenesis is the receptor activator of nuclear factor-κB ligand (RANKL), which is mainly supplied by osteoblasts. Additionally, osteocytes embedded within the bone matrix, T lymphocytes in inflammatory conditions, and PDL cells produce RANKL. Besides RANKL, inflammatory cytokines, such as interleukin-1, tumor necrosis factor-α, and prostaglandin E2 promote osteoclastogenesis under OTM. On the downside, excessive osteoclastogenesis activation triggers orthodontically-induced external root resorption (ERR) through pro-osteoclastic inflammatory cytokines. Therefore, understanding the mechanisms of osteoclastogenesis during OTM is essential in reducing the adverse effects of orthodontic treatment. Here, we review the current concepts of the mechanisms underlying osteoclastogenesis in OTM and orthodontically induced ERR.

20.
Jpn Dent Sci Rev ; 59: 412-420, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38022387

RESUMEN

Single-cell omics and multi-omics have revolutionized our understanding of molecular and cellular biological processes at a single-cell level. In bone biology, the combination of single-cell RNA-sequencing analyses and in vivo lineage-tracing approaches has successfully identified multi-cellular diversity and dynamics of skeletal cells. This established a new concept that bone growth and regeneration are regulated by concerted actions of multiple types of skeletal stem cells, which reside in spatiotemporally distinct niches. One important subtype is endosteal stem cells that are particularly abundant in young bone marrow. The discovery of this new skeletal stem cell type has been facilitated by single-cell multi-omics, which simultaneously measures gene expression and chromatin accessibility. Using single-cell omics, it is now possible to computationally predict the immediate future state of individual cells and their differentiation potential. In vivo validation using histological approaches is the key to interpret the computational prediction. The emerging spatial omics, such as spatial transcriptomics and epigenomics, have major advantage in retaining the location of individual cells within highly complex tissue architecture. Spatial omics can be integrated with other omics to further obtain in-depth insights. Single-cell multi-omics are now becoming an essential tool to unravel intricate multicellular dynamics and intercellular interactions of skeletal cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA