Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
FASEB J ; 37(1): e22701, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36520031

RESUMEN

Calcification of the medial layer, inducing arterial stiffness, contributes significantly to cardiovascular mortality in patients with chronic kidney disease (CKD). Extracellular nucleotides block the mineralization of arteries by binding to purinergic receptors including the P2Y2 receptor. This study investigates whether deletion of the P2Y2 receptor influences the development of arterial media calcification in CKD mice. Animals were divided into: (i) wild type mice with normal renal function (control diet) (n = 8), (ii) P2Y2 R-/- mice with normal renal function (n = 8), (iii) wild type mice with CKD (n = 27), and (iv) P2Y2 R-/- mice with CKD (n = 22). To induce CKD, animals received an alternating (0.2-0.3%) adenine diet for 7 weeks. All CKD groups developed a similar degree of chronic renal failure as reflected by high serum creatinine and phosphorus levels. Also, the presence of CKD induced calcification in the heart and medial layer of the aortic wall. However, deletion of the P2Y2 receptor makes CKD mice more susceptible to the development of calcification in the heart and aorta (aortic calcium scores (median ± IQR), CKD-wild type: 0.34 ± 4.3 mg calcium/g wet tissue and CKD-P2Y2 R-/- : 4.0 ± 13.2 mg calcium/g wet tissue). As indicated by serum and aortic mRNA markers, this P2Y2 R-/- mediated increase in CKD-related arterial media calcification was associated with an elevation of calcification stimulators, including alkaline phosphatase and inflammatory molecules interleukin-6 and lipocalin 2. The P2Y2 receptor should be considered as an interesting therapeutic target for tackling CKD-related arterial media calcification.


Asunto(s)
Fosfatasa Alcalina , Lipocalina 2 , Insuficiencia Renal Crónica , Túnica Íntima , Calcificación Vascular , Animales , Ratones , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Calcio/metabolismo , Lipocalina 2/genética , Lipocalina 2/metabolismo , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Túnica Íntima/metabolismo , Túnica Íntima/patología , Regulación hacia Arriba , Calcificación Vascular/etiología , Calcificación Vascular/genética , Calcificación Vascular/metabolismo
2.
FASEB J ; 36(5): e22315, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35429059

RESUMEN

Arterial media calcification is an active cell process. This encompasses osteochondrogenic transdifferentiation of vascular smooth muscle cells followed by the deposition of calcium-phosphate crystals. Increasing evidence suggests a significant role for endothelial cells (ECs) in the development of arterial media calcification. This manuscript explores a role for endothelial dysfunction in the disease progression of arterial media calcification. Male rats were randomly assigned to four different groups. The first group received standard chow. The second group was given L-NAME (≈50 mg kg-1 · d-1 ), to induce endothelial dysfunction, in addition to standard chow. The third group and fourth group received a warfarin-supplemented diet to induce mild calcification and the latter group was co-administered L-NAME. Prior to sacrifice, non-invasive measurement of aortic distensibility was performed. Animals were sacrificed after 6 weeks. Arterial media calcification was quantified by measuring aortic calcium and visualized on paraffin-embedded slices by the Von Kossa method. Arterial stiffness and aortic reactivity was assessed on isolated carotid segments using specialized organ chamber setups. Warfarin administration induced mineralization. Simultaneous administration of warfarin and L-NAME aggravated the arterial media calcification process. Through organ chamber experiments an increased vessel tonus was found, which could be linked to reduced basal NO availability, in arteries of warfarin-treated animals. Furthermore, increased calcification because of L-NAME administration was related to a further compromised endothelial function (next to deteriorated basal NO release also deteriorated stimulated NO release). Our findings suggest early EC changes to impact the disease progression of arterial media calcification.


Asunto(s)
Calcinosis , Calcificación Vascular , Enfermedades Vasculares , Animales , Calcio , Progresión de la Enfermedad , Células Endoteliales , Masculino , NG-Nitroarginina Metil Éster , Ratas , Túnica Media , Calcificación Vascular/inducido químicamente , Warfarina/toxicidad
3.
Nephrol Dial Transplant ; 38(5): 1127-1138, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36316014

RESUMEN

BACKGROUND: Cardiovascular disease remains the leading cause of death in chronic kidney disease (CKD) patients, especially in those undergoing dialysis and kidney transplant surgery. CKD patients are at high risk of developing arterial media calcifications (AMC) and arterial stiffness. We hypothesized that investigation of disease progression at an early stage could provide novel insights in understanding AMC etiology. METHODS: An adenine diet was administered to male Wistar rats to induce AMC. Rats were sacrificed after 2, 4 and 8 weeks. AMC was measured by assessment of aortic calcium and visualized using histology. Arterial stiffness was measured in vivo by ultrasound and ex vivo by applying cyclic stretch of physiological magnitude on isolated arterial segments, allowing us to generate the corresponding pressure-diameter loops. Further, ex vivo arterial reactivity was assessed in organ baths at 2 and 4 weeks to investigate early alterations in biomechanics/cellular functionality. RESULTS: CKD rats showed a time-dependent increase in aortic calcium which was confirmed on histology. Accordingly, ex vivo arterial stiffness progressively worsened. Pressure-diameter loops showed a gradual loss of arterial compliance in CKD rats. Additionally, viscoelastic properties of isolated arterial segments were altered in CKD rats. Furthermore, after 2 and 4 weeks of adenine treatment, a progressive loss in basal, nitric oxide (NO) levels was observed, which was linked to an increased vessel tonus and translates into an increasing viscous modulus. CONCLUSIONS: Our observations indicate that AMC-related vascular alterations develop early after CKD induction prior to media calcifications being present. Preventive action, related to restoration of NO bioavailability, might combat AMC development.


Asunto(s)
Arteriosclerosis , Calcinosis , Insuficiencia Renal Crónica , Calcificación Vascular , Rigidez Vascular , Masculino , Ratas , Animales , Calcio , Ratas Wistar , Diálisis Renal , Insuficiencia Renal Crónica/complicaciones , Rigidez Vascular/fisiología , Progresión de la Enfermedad , Adenina , Calcificación Vascular/etiología , Calcificación Vascular/prevención & control
4.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36835062

RESUMEN

Arterial media calcification refers to the pathological deposition of calcium phosphate crystals in the arterial wall. This pathology is a common and life-threatening complication in chronic kidney disease, diabetes and osteoporosis patients. Recently, we reported that the use of a TNAP inhibitor, SBI-425, attenuated arterial media calcification in a warfarin rat model. Employing a high-dimensionality unbiased proteomic approach, we also investigated the molecular signaling events associated with blocking arterial calcification through SBI-425 dosing. The remedial actions of SBI-425 were strongly associated with (i) a significant downregulation of inflammatory (acute phase response signaling) and steroid/glucose nuclear receptor signaling (LXR/RXR signaling) pathways and (ii) an upregulation of mitochondrial metabolic pathways (TCA cycle II and Fatty Acid ß-oxidation I). Interestingly, we previously demonstrated that uremic toxin-induced arterial calcification contributes to the activation of the acute phase response signaling pathway. Therefore, both studies suggest a strong link between acute phase response signaling and arterial calcification across different conditions. The identification of therapeutic targets in these molecular signaling pathways may pave the way to novel therapies against the development of arterial media calcification.


Asunto(s)
Calcinosis , Calcificación Vascular , Ratas , Animales , Warfarina , Reacción de Fase Aguda , Proteómica , Fosfatasa Alcalina/metabolismo , Calcinosis/metabolismo , Calcificación Vascular/patología
5.
J Pathol ; 250(3): 248-250, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31859361

RESUMEN

Arterial media calcification refers to ectopic mineralization in the arterial wall and favors arterial stiffness and cardiovascular events. Patients with chronic kidney disease (CKD), diabetes, or osteoporosis are highly vulnerable to the development of arterial media calcifications. Tissue non-specific alkaline phosphatase (TNAP) is upregulated in calcified arteries and plays a key role in the degradation of the calcification inhibitor pyrophosphate into inorganic phosphate ions. A recent study published in The Journal of Pathology showed that an oral dosage of 10 or 30 mg/kg/day SBI-425, a selective TNAP inhibitor, inhibited the development of arterial media calcification in mice with CKD, without affecting bone mineralization. Their results indicated that SBI-425 is an effective and safe treatment for arterial media calcification. However, additional studies regarding the effect of TNAP-inhibitor SBI-425 on the progression and even the reversion of pre-existing pathological arterial media calcifications without affecting physiological bone mineralization are deserved. Furthermore, investigating the extent to which SBI-425 inhibits arterial calcification in a non-CKD context would be of particular interest to treat this comorbidity in diabetes and osteoporosis patients. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Calcificación Fisiológica , Calcinosis , Fosfatasa Alcalina , Animales , Humanos , Ratones , Reino Unido
6.
J Am Soc Nephrol ; 30(5): 751-766, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30940651

RESUMEN

BACKGROUND: Protein-bound uremic toxins indoxyl sulfate (IS) and p-cresyl sulfate (PCS) have been associated with cardiovascular morbidity and mortality in patients with CKD. However, direct evidence for a role of these toxins in CKD-related vascular calcification has not been reported. METHODS: To study early and late vascular alterations by toxin exposure, we exposed CKD rats to vehicle, IS (150 mg/kg per day), or PCS (150 mg/kg per day) for either 4 days (short-term exposure) or 7 weeks (long-term exposure). We also performed unbiased proteomic analyses of arterial samples coupled to functional bioinformatic annotation analyses to investigate molecular signaling events associated with toxin-mediated arterial calcification. RESULTS: Long-term exposure to either toxin at serum levels similar to those experienced by patients with CKD significantly increased calcification in the aorta and peripheral arteries. Our analyses revealed an association between calcification events, acute-phase response signaling, and coagulation and glucometabolic signaling pathways, whereas escape from toxin-induced calcification was linked with liver X receptors and farnesoid X/liver X receptor signaling pathways. Additional metabolic linkage to these pathways revealed that IS and PCS exposure engendered a prodiabetic state evidenced by elevated resting glucose and reduced GLUT1 expression. Short-term exposure to IS and PCS (before calcification had been established) showed activation of inflammation and coagulation signaling pathways in the aorta, demonstrating that these signaling pathways are causally implicated in toxin-induced arterial calcification. CONCLUSIONS: In CKD, both IS and PCS directly promote vascular calcification via activation of inflammation and coagulation pathways and were strongly associated with impaired glucose homeostasis.


Asunto(s)
Carbamatos/efectos adversos , Intolerancia a la Glucosa/fisiopatología , Indicán/efectos adversos , Poliésteres/efectos adversos , Insuficiencia Renal Crónica/patología , Calcificación Vascular/inducido químicamente , Animales , Productos Biológicos/farmacología , Biopsia con Aguja , Carbamatos/farmacología , Modelos Animales de Enfermedad , Inmunohistoquímica , Indicán/farmacología , Masculino , Metformina/farmacología , Poliésteres/farmacología , Distribución Aleatoria , Ratas , Ratas Wistar , Sensibilidad y Especificidad , Calcificación Vascular/tratamiento farmacológico , Calcificación Vascular/patología
7.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33076470

RESUMEN

Arterial calcification, the deposition of calcium-phosphate crystals in the extracellular matrix, resembles physiological bone mineralization. It is well-known that extracellular nucleotides regulate bone homeostasis raising an emerging interest in the role of these molecules on arterial calcification. The purinergic independent pathway involves the enzymes ecto-nucleotide pyrophosphatase/phosphodiesterases (NPPs), ecto-nucleoside triphosphate diphosphohydrolases (NTPDases), 5'-nucleotidase and alkaline phosphatase. These regulate the production and breakdown of the calcification inhibitor-pyrophosphate and the calcification stimulator-inorganic phosphate, from extracellular nucleotides. Maintaining ecto-nucleotidase activities in a well-defined range is indispensable as enzymatic hyper- and hypo-expression has been linked to arterial calcification. The purinergic signaling dependent pathway focusses on the activation of purinergic receptors (P1, P2X and P2Y) by extracellular nucleotides. These receptors influence arterial calcification by interfering with the key molecular mechanisms underlying this pathology, including the osteogenic switch and apoptosis of vascular cells and possibly, by favoring the phenotypic switch of vascular cells towards an adipogenic phenotype, a recent, novel hypothesis explaining the systemic prevention of arterial calcification. Selective compounds influencing the activity of ecto-nucleotidases and purinergic receptors, have recently been developed to treat arterial calcification. However, adverse side-effects on bone mineralization are possible as these compounds reasonably could interfere with physiological bone mineralization.


Asunto(s)
Espacio Extracelular/metabolismo , Nucleótidos de Purina/metabolismo , Receptores Purinérgicos/metabolismo , Calcificación Vascular/metabolismo , Animales , Arterias/metabolismo , Arterias/patología , Humanos , Transducción de Señal
8.
J Cell Physiol ; 233(4): 3230-3243, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28976001

RESUMEN

Arterial medial calcification (AMC) is thought to share some outward similarities to skeletal mineralization and has been associated with the transdifferentiation of vascular smooth muscle cells (VSMCs) to an osteoblast-like phenotype. ATP and UTP have previously been shown to inhibit bone mineralization. This investigation compared the effects of extracellular nucleotides on calcification in VSMCs with those seen in osteoblasts. ATP, UTP and the ubiquitous mineralization inhibitor, pyrophosphate (PPi ), dose dependently inhibited VSMC calcification by ≤85%. Culture of VSMCs in calcifying conditions was associated with an increase in apoptosis; treatment with ATP, UTP, and PPi reduced apoptosis to levels seen in non-calcifying cells. Extracellular nucleotides had no effect on osteoblast viability. Basal alkaline phosphatase (TNAP) activity was over 100-fold higher in osteoblasts than VSMCs. ATP and UTP reduced osteoblast TNAP activity (≤50%) but stimulated VSMC TNAP activity (≤88%). The effects of extracellular nucleotides on VSMC calcification, cell viability and TNAP activity were unchanged by deletion or inhibition of the P2Y2 receptor. Conversely, the actions of ATP/UTP on bone mineralization and TNAP activity were attenuated in osteoblasts lacking the P2Y2 receptor. Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) hydrolyses ATP and UTP to produce PPi . In both VSMCs and osteoblasts, deletion of NPP1 blunted the inhibitory effects of extracellular nucleotides suggesting involvement of P2 receptor independent pathways. Our results show that although the overall functional effect of extracellular nucleotides on AMC and bone mineralization is similar there are clear differences in the cellular mechanisms mediating these actions.


Asunto(s)
Calcificación Fisiológica , Espacio Extracelular/metabolismo , Nucleótidos/farmacología , Túnica Media/patología , Calcificación Vascular/patología , Adenosina Trifosfato/farmacología , Fosfatasa Alcalina/metabolismo , Animales , Apoptosis/efectos de los fármacos , Calcificación Fisiológica/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Difosfatos/farmacología , Ratones , Modelos Biológicos , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/enzimología , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/enzimología , Hidrolasas Diéster Fosfóricas/deficiencia , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/deficiencia , Pirofosfatasas/metabolismo , Receptores Purinérgicos P2/metabolismo , Uridina Trifosfato/farmacología
9.
Kidney Int ; 94(1): 102-113, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29716795

RESUMEN

Chronic kidney disease (CKD) causes dysregulation of mineral metabolism, vascular calcification and renal osteodystrophy, an entity called 'CKD-Mineral and Bone Disorder' (CKD-MBD). Here we determine whether metformin, an anti-diabetic drug, exerts favorable effects on progressive, severe CKD and concomitant mineral metabolism disturbances. Rats with CKD-MBD, induced by a 0.25% adenine diet for eight weeks, were treated with 200 mg/kg/day metformin or vehicle from one week after CKD induction onward. Severe, stable CKD along with marked hyperphosphatemia and hypocalcemia developed in these rats which led to arterial calcification and high bone turnover disease. Metformin protected from development toward severe CKD. Metformin-treated rats did not develop hyperphosphatemia or hypocalcemia and this prevented the development of vascular calcification and inhibited the progression toward high bone turnover disease. Kidneys of the metformin group showed significantly less cellular infiltration, fibrosis and inflammation. To study a possible direct effect of metformin on the development of vascular calcification, independent of its effect on renal function, metformin (200 mg/kg/day) or vehicle was dosed for ten weeks to rats with warfarin-induced vascular calcification. The drug did not reduce aorta or small vessel calcification in this animal model. Thus, metformin protected against the development of severe CKD and preserved calcium phosphorus homeostasis. As a result of its beneficial impact on renal function, associated comorbidities such as vascular calcification and high bone turnover disease were also prevented.


Asunto(s)
Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/prevención & control , Hipoglucemiantes/uso terapéutico , Metformina/uso terapéutico , Insuficiencia Renal Crónica/tratamiento farmacológico , Calcificación Vascular/prevención & control , Adenina/toxicidad , Animales , Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/etiología , Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/metabolismo , Modelos Animales de Enfermedad , Humanos , Masculino , Ratas , Ratas Wistar , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/metabolismo , Índice de Severidad de la Enfermedad , Resultado del Tratamiento , Calcificación Vascular/etiología , Calcificación Vascular/metabolismo , Warfarina/toxicidad
10.
Calcif Tissue Int ; 99(5): 525-534, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27461215

RESUMEN

Vascular calcification significantly contributes to mortality in chronic kidney disease (CKD) patients. Sevelamer and pyrophosphate (PPi) have proven to be effective in preventing vascular calcification, the former by controlling intestinal phosphate absorption, the latter by directly interfering with the hydroxyapatite crystal formation. Since most patients present with established vascular calcification, it is important to evaluate whether these compounds may also halt or reverse the progression of preexisting vascular calcification. CKD and vascular calcification were induced in male Wistar rats by a 0.75 % adenine low protein diet for 4 weeks. Treatment with PPi (30 or 120 µmol/kg/day), sevelamer carbonate (1500 mg/kg/day) or vehicle was started at the time point at which vascular calcification was present and continued for 3 weeks. Hyperphosphatemia and vascular calcification developed prior to treatment. A significant progression of aortic calcification in vehicle-treated rats with CKD was observed over the final 3-week period. Sevelamer treatment significantly reduced further progression of aortic calcification as compared to the vehicle control. No such an effect was seen for either PPi dose. Sevelamer but not PPi treatment resulted in an increase in both osteoblast and osteoid perimeter. Our study shows that sevelamer was able to reduce the progression of moderate to severe preexisting aortic calcification in a CKD rat model. Higher doses of PPi may be required to induce a similar reduction of severe established arterial calcification in this CKD model.


Asunto(s)
Difosfatos/farmacología , Durapatita/antagonistas & inhibidores , Insuficiencia Renal Crónica/complicaciones , Sevelamer/farmacología , Calcificación Vascular/patología , Animales , Aorta/patología , Quelantes/farmacología , Masculino , Ratas , Ratas Wistar , Calcificación Vascular/etiología
11.
JBMR Plus ; 8(6): ziae057, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38764790

RESUMEN

Arterial media calcification or pathological deposition of calcium-phosphate crystals in the vessel wall contributes significantly to the high mortality rate observed in patients with CKD. Extracellular nucleotides (ie, ATP or UTP) regulate the arterial calcification process by interacting with (1) purinergic receptors and (2) breakdown via ecto-nucleotidases, such as ectonucleotide pyrophosphatase/phosphodiesterase NPP1 or NPP3, affecting the local levels of calcification inhibitor, pyrophosphate, and stimulator inorganic phosphate (PPi/Pi ratio). Also, it has been shown that ATP analogs (ie, ß,γ-methylene-ATP [ß,γ-meATP]) inhibit vascular smooth muscle cell calcification in vitro. In the first experiment, daily dosing of ß,γ-meATP (2 mg/kg) was investigated in rats fed a warfarin diet to trigger the development of non-CKD-related arterial medial calcifications. This study showed that ß,γ-meATP significantly lowered the calcium scores in the aorta and peripheral vessels in warfarin-exposed rats. In a second experiment, daily dosing of 4 mg/kg ß,γ-meATP and its metabolite medronic acid (MDP) was analyzed in rats fed an adenine diet to promote the development of CKD-related arterial medial calcification. Administration of ß,γ-meATP and MDP did not significantly decrease aortic calcification scores in this model. Moreover, both compounds induced deleterious effects on physiological bone mineralization, causing an imminent risk for worsening the already compromised bone status in CKD. Due to this, it was not possible to raise the dosage of both compounds to tackle CKD-related arterial calcification. Again, this points out the difficult task of targeting solely ectopic calcifications without negatively affecting physiological bone mineralization. On the other hand, aortic mRNA expression of Enpp1 and Enpp3 was significantly and positively associated with aortic calcification scores, suggesting that normalizing the aortic NPP1/3 activity to control values might be a possible target to treat (CKD-induced) arterial media calcifications.

12.
Metabolites ; 12(4)2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35448514

RESUMEN

The presence of arterial media calcification, a highly complex and multifactorial disease, puts patients at high risk for developing serious cardiovascular consequences and mortality. Despite the numerous insights into the mechanisms underlying this pathological mineralization process, there is still a lack of effective treatment therapies interfering with the calcification process in the vessel wall. Current anti-calcifying therapeutics may induce detrimental side effects at the level of the bone, as arterial media calcification is regulated in a molecular and cellular similar way as physiological bone mineralization. This especially is a complication in patients with chronic kidney disease and diabetes, who are the prime targets of this pathology, as they already suffer from a disturbed mineral and bone metabolism. This review outlines recent treatment strategies tackling arterial calcification, underlining their potential to influence the bone mineralization process, including targeting vascular cell transdifferentiation, calcification inhibitors and stimulators, vascular smooth muscle cell (VSMC) death and oxidative stress: are they a friend or foe? Furthermore, this review highlights nutritional additives and a targeted, local approach as alternative strategies to combat arterial media calcification. Paving a way for the development of effective and more precise therapeutic approaches without inducing osseous side effects is crucial for this highly prevalent and mortal disease.

13.
J Bone Miner Res ; 37(4): 687-699, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35038187

RESUMEN

Sclerostin is a negative regulator of the Wnt/ß-catenin signaling and is, therefore, an important inhibitor of bone formation and turnover. Because ectopic vascular calcification develops in a similar way to bone formation, one might reasonably attribute a role to sclerostin in this pathological process. Ectopic calcification, especially vascular calcification, importantly contributes to mortality in elderly and patients with diabetes, osteoporosis, chronic kidney disease (CKD), and hypertension. The central players in this ectopic calcification process are the vascular smooth muscle cells that undergo dedifferentiation and thereby acquire characteristics of bonelike cells. Therefore, we hypothesize that depletion/deactivation of the Wnt/ß-catenin signaling inhibitor sclerostin may promote the development of ectopic calcifications through stimulation of bone-anabolic effects at the level of the arteries. We investigated the role of sclerostin (encoded by the Sost gene) during vascular calcification by using either Sost-/- mice or anti-sclerostin antibody. Sost-/- and wild-type (WT) mice (C57BL/6J background) were administered an adenine-containing diet to promote the development of CKD-induced vascular calcification. Calcifications developed more extensively in the cardiac vessels of adenine-exposed Sost-/- mice, compared to adenine-exposed WT mice. This could be concluded from the cardiac calcium content as well as from cardiac tissue sections on which calcifications were visualized histochemically. In a second experiment, DBA/2J mice were administered a warfarin-containing diet to induce vascular calcifications in the absence of CKD. Here, warfarin exposure led to significantly increased aortic and renal tissue calcium content. Calcifications, which were present in the aortic medial layer and renal vessels, were significantly more pronounced when warfarin treatment was combined with anti-sclerostin antibody treatment. This study demonstrates a protective effect of sclerostin during vascular calcification. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Insuficiencia Renal Crónica , Calcificación Vascular , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenina/efectos adversos , Anciano , Animales , Calcio , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Warfarina/efectos adversos , beta Catenina
14.
Pharmaceutics ; 13(8)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34452102

RESUMEN

Patients with chronic kidney disease (CKD) suffer from arterial media calcification and a disturbed bone metabolism. Tissue-nonspecific alkaline phosphatase (TNAP) hydrolyzes the calcification inhibitor pyrophosphate (PPi) into inorganic phosphate (Pi) and thereby stimulates arterial media calcification as well as physiological bone mineralization. This study investigates whether the TNAP inhibitor SBI-425, PPi or the combination of both inhibit arterial media calcification in an 0.75% adenine rat model of CKD. Treatments started with the induction of CKD, including (i) rats with normal renal function (control diet) treated with vehicle and CKD rats treated with either (ii) vehicle, (iii) 10 mg/kg/day SBI-425, (iv) 120 µmol/kg/day PPi and (v) 120 µmol/kg/day PPi and 10 mg/kg/day SBI-425. All CKD groups developed a stable chronic renal failure reflected by hyperphosphatemia, hypocalcemia and high serum creatinine levels. CKD induced arterial media calcification and bone metabolic defects. All treatments, except for SBI-425 alone, blocked CKD-related arterial media calcification. More important, SBI-425 alone and in combination with PPi increased osteoid area pointing to a less efficient bone mineralization. Clearly, potential side effects on bone mineralization will need to be assessed in any clinical trial aimed at modifying the Pi/PPi ratio in CKD patients who already suffer from a compromised bone status.

15.
Toxins (Basel) ; 12(1)2020 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-31963891

RESUMEN

The protein-bound uremic toxins, indoxyl sulfate (IS) and p-cresyl sulfate (PCS), are considered to be harmful vascular toxins. Arterial media calcification, or the deposition of calcium phosphate crystals in the arteries, contributes significantly to cardiovascular complications, including left ventricular hypertrophy, hypertension, and impaired coronary perfusion in the elderly and patients with chronic kidney disease (CKD) and diabetes. Recently, we reported that both IS and PCS trigger moderate to severe calcification in the aorta and peripheral vessels of CKD rats. This review describes the molecular and cellular mechanisms by which these uremic toxins induce arterial media calcification. A complex interplay between inflammation, coagulation, and lipid metabolism pathways, influenced by epigenetic factors, is crucial in IS/PCS-induced arterial media calcification. High levels of glucose are linked to these events, suggesting that a good balance between glucose and lipid levels might be important. On the cellular level, effects on endothelial cells, which act as the primary sensors of circulating pathological triggers, might be as important as those on vascular smooth muscle cells. Endothelial dysfunction, provoked by IS and PCS triggered oxidative stress, may be considered a key event in the onset and development of arterial media calcification. In this review a number of important outstanding questions such as the role of miRNA's, phenotypic switching of both endothelial and vascular smooth muscle cells and new types of programmed cell death in arterial media calcification related to protein-bound uremic toxins are put forward and discussed.


Asunto(s)
Cresoles/metabolismo , Indicán/metabolismo , Ésteres del Ácido Sulfúrico/metabolismo , Anciano , Animales , Células Endoteliales , Humanos , Masculino , Ratas , Insuficiencia Renal Crónica/metabolismo , Toxinas Biológicas/metabolismo , Enfermedades Vasculares
16.
Bone ; 137: 115392, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32360899

RESUMEN

Arterial media calcification is frequently seen in elderly and patients with chronic kidney disease (CKD), diabetes and osteoporosis. Pyrophosphate is a well-known calcification inhibitor that binds to nascent hydroxyapatite crystals and prevents further incorporation of inorganic phosphate into these crystals. However, the enzyme tissue-nonspecific alkaline phosphatase (TNAP), which is expressed in calcified arteries, degrades extracellular pyrophosphate into phosphate ions, by which pyrophosphate loses its ability to block vascular calcification. Here, we aimed to evaluate whether pharmacological TNAP inhibition is able to prevent the development of arterial calcification in a rat model of warfarin-induced vascular calcification. To investigate the effect of the pharmacological TNAP inhibitor SBI-425 on vascular calcification and bone metabolism, a 0.30% warfarin rat model was used. Warfarin exposure resulted in distinct calcification in the aorta and peripheral arteries. Daily administration of the TNAP inhibitor SBI-425 (10 mg/kg/day) for 7 weeks significantly reduced vascular calcification as indicated by a significant decrease in calcium content in the aorta (vehicle 3.84 ± 0.64 mg calcium/g wet tissue vs TNAP inhibitor 0.70 ± 0.23 mg calcium/g wet tissue) and peripheral arteries and a distinct reduction in area % calcification on Von Kossa stained aortic sections as compared to vehicle. Administration of SBI-425 resulted in decreased bone formation rate and mineral apposition rate, and increased osteoid maturation time and this without significant changes in osteoclast- and eroded perimeter. Administration of TNAP inhibitor SBI-425 significantly reduced the calcification in the aorta and peripheral arteries of a rat model of warfarin-induced vascular calcification. However, suppression of TNAP activity should be limited in order to maintain adequate physiological bone mineralization.


Asunto(s)
Fosfatasa Alcalina , Calcificación Vascular , Fosfatasa Alcalina/antagonistas & inhibidores , Animales , Calcificación Fisiológica , Proteínas de la Membrana , Osteogénesis , Ratas , Túnica Media , Calcificación Vascular/inducido químicamente , Calcificación Vascular/tratamiento farmacológico , Warfarina/farmacología
17.
Adv Chronic Kidney Dis ; 26(6): 472-483, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31831125

RESUMEN

Patients with chronic kidney disease (CKD) are at increased risk of osteoporosis and vascular calcification. Bone demineralization and vascular mineralization go often hand in hand in CKD, similar to as in the general population. This contradictory association is independent of aging and is commonly referred to as the "calcification paradox" or the bone-vascular axis. Various common risk factors and mechanisms have been identified. Alternatively, calcifying vessels may release circulating factors that affect bone metabolism, while bone disease may infer conditions that favor vascular calcification. The present review focuses on emerging concepts and major mechanisms involved in the bone-vascular axis in the setting of CKD. A better understanding of these concepts and mechanisms may identify therapeutics able to target and exert beneficial effects on bone and vasculature simultaneously.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Glucuronidasa/metabolismo , Osteoporosis/metabolismo , Osteoprotegerina/metabolismo , Insuficiencia Renal Crónica/metabolismo , Calcificación Vascular/metabolismo , Animales , Enfermedades Cardiovasculares/metabolismo , Humanos , Inflamación/metabolismo , Proteínas Klotho , Hormona Paratiroidea/metabolismo , Transducción de Señal , Vitamina K/metabolismo
18.
Trends Mol Med ; 25(12): 1133-1146, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31522956

RESUMEN

Arterial media calcification and arterial stiffness are independent predictors of cardiovascular mortality. Both processes reinforce one another, creating a vicious cycle in which transdifferentiation of endothelial cells and vascular smooth muscle cells play a central role. Physiological functioning of vascular smooth muscle cells in the arterial medial layer greatly depends on normal endothelial cell behavior. Endothelial or intimal layer cells are the primary sensors of pathological triggers circulating in the blood during, for example, ageing or inflammation, and often can be seen as initiators of this vicious cycle. As such, the search for treatment of arterial media calcification, which until now has been mainly concentrated at the level of the vascular smooth cell, may need to be expanded to intimal layer targets.


Asunto(s)
Arterias/patología , Túnica Media/patología , Calcificación Vascular/patología , Rigidez Vascular , Animales , Arterias/metabolismo , Arterias/fisiopatología , Sistema Enzimático del Citocromo P-450/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Óxido Nítrico/metabolismo , Túnica Media/metabolismo , Túnica Media/fisiopatología , Calcificación Vascular/metabolismo , Calcificación Vascular/fisiopatología
19.
Toxins (Basel) ; 11(7)2019 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-31330917

RESUMEN

Sclerostin is a well-known inhibitor of bone formation that acts on Wnt/ß-catenin signaling. This manuscript considers the possible role of sclerostin in vascular calcification, a process that shares many similarities with physiological bone formation. Rats were exposed to a warfarin-containing diet to induce vascular calcification. Vascular smooth muscle cell transdifferentiation, vascular calcification grade, and bone histomorphometry were examined. The presence and/or production of sclerostin was investigated in serum, aorta, and bone. Calcified human aortas were investigated to substantiate clinical relevance. Warfarin-exposed rats developed vascular calcifications in a time-dependent manner which went along with a progressive increase in serum sclerostin levels. Both osteogenic and adipogenic pathways were upregulated in calcifying vascular smooth muscle cells, as well as sclerostin mRNA and protein levels. Evidence for the local vascular action of sclerostin was found both in human and rat calcified aortas. Warfarin exposure led to a mildly decreased bone and mineralized areas. Osseous sclerostin production and bone turnover did not change significantly. This study showed local production of sclerostin in calcified vessels, which may indicate a negative feedback mechanism to prevent further calcification. Furthermore, increased levels of serum sclerostin, probably originating from excessive local production in calcified vessels, may contribute to the linkage between vascular pathology and impaired bone mineralization.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Calcificación Vascular/metabolismo , Adipogénesis , Animales , Arterias/metabolismo , Proteínas Morfogenéticas Óseas/sangre , Proteínas Morfogenéticas Óseas/genética , Huesos/metabolismo , Calcio/metabolismo , Diferenciación Celular/efectos de los fármacos , Marcadores Genéticos/genética , Humanos , Masculino , Miocitos del Músculo Liso/efectos de los fármacos , Osteogénesis , ARN Mensajero/metabolismo , Ratas Wistar , Calcificación Vascular/inducido químicamente , Warfarina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA