RESUMEN
Glial reactivity may contribute to sex/gender differences in Alzheimer's disease (AD) pathophysiology. Here, we investigated the differential effect of cerebrospinal fluid (CSF) glial markers on AD pathology and neurodegeneration by sex/gender among cognitively unimpaired older adults at increased risk of developing AD. We included 397 participants from the ALFA+ cohort with CSF Aß42/40, p-tau181, sTREM2, YKL40, and GFAP, magnetic resonance imaging-based hippocampal volume (n = 299), and amyloid burden (centiloids) measured with [18F] flutemetamol positron emission tomography (n = 341). We ran multiple linear regression models to assess the association between glial markers, AD pathology and hippocampal volumes and their interaction with sex/gender, using False Discovery Rate to correct for multiple comparisons. Glial markers significantly contributed to explain amyloid burden, tau pathology, and hippocampal volumes, beyond age and/or primary AD pathology in a sex/gender-specific manner. Compared to men, women showed increased amyloid burden (centiloids) and CSF p-tau181 with increasing levels of sTREM2 and YKL40, and YKL40 and GFAP, respectively. Compared to women, men with greater tau burden showed lower hippocampal volumes as CSF YKL40 levels increased. Overall, our findings suggest that glial reactivity may contribute to sex/gender differences in AD progression, mostly, downstream amyloid. Further research identifying sex/gender-specific temporal dynamics in AD development is warranted to inform clinical trials.
RESUMEN
Brain atrophy and cortical thinning are typically observed in people with Alzheimer's disease (AD) and, to a lesser extent, in those with mild cognitive impairment. In asymptomatic middle-aged apolipoprotein ε4 (ΑPOE4) carriers, who are at higher risk of future AD, study reports are discordant with limited evidence of brain structural differences between carriers and non-carriers of the ε4 allele. Alternative imaging markers with higher sensitivity at the presymptomatic stage, ideally quantified using typically acquired structural MRI scans, would thus be of great benefit for the detection of early disease, disease monitoring and subject stratification. In the present cross-sectional study, we investigated textural properties of T1-weighted 3T MRI scans in relation to APOE4 genotype, age and sex. We pooled together data from the PREVENT-Dementia and ALFA studies focused on midlife healthy populations with dementia risk factors (analysable cohort: 1585 participants; mean age 56.2 ± 7.4 years). Voxel-based and texture (examined features: contrast, entropy, energy, homogeneity) based morphometry was used to identify areas of volumetric and textural differences between APOE4 carriers and non-carriers. Textural maps were generated and were subsequently harmonised using voxel-wise COMBAT. For all analyses, APOE4, sex, age and years of education were used as model predictors. Interactions between APOE4 and age were further examined. There were no group differences in regional brain volume or texture based on APOE4 carriership or when age × APOE4 interactions were examined. Older people tended to have a less homogeneous textural profile in grey and white matter and a more homogeneous profile in the ventricles. A more heterogeneous textural profile was observed for females in areas such as the ventricles, frontal and parietal lobes and for males in the brainstem, cerebellum, precuneus and cingulate. Overall, we have shown the absence of volumetric and textural differences between APOE4 carriers and non-carriers at midlife and have established associations of textural features with ageing and sex.
Asunto(s)
Envejecimiento , Apolipoproteína E4 , Imagen por Resonancia Magnética , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Envejecimiento/patología , Envejecimiento/genética , Apolipoproteína E4/genética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Estudios Transversales , Genotipo , Heterocigoto , Caracteres SexualesRESUMEN
The investigation of resting-state functional connectivity (rsFC) in asymptomatic individuals at genetic risk for Alzheimer's disease (AD) enables discovering the earliest brain alterations in preclinical stages of the disease. The APOE-ε4 variant is the major genetic risk factor for AD, and previous studies have reported rsFC abnormalities in carriers of the ε4 allele. Yet, no study has assessed APOE-ε4 gene-dose effects on rsFC measures, and only a few studies included measures of cognitive performance to aid a clinical interpretation. We assessed the impact of APOE-ε4 on rsFC in a sample of 429 cognitively unimpaired individuals hosting a high number of ε4 homozygotes (n = 58), which enabled testing different models of genetic penetrance. We used independent component analysis and found a reduced rsFC as a function of the APOE-ε4 allelic load in the temporal default-mode and the medial temporal networks, while recessive effects were found in the extrastriate and limbic networks. Some of these results were replicated in a subsample with negative amyloid markers. Interaction with cognitive data suggests that such a network reorganization may support cognitive performance in the ε4-homozygotes. Our data indicate that APOE-ε4 shapes the functional architecture of the resting brain and favor the idea of a network-based functional compensation.
Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Mapeo Encefálico , Encéfalo , Cognición , Red Nerviosa , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Apolipoproteína E4/genética , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico/métodos , Cognición/fisiología , Predisposición Genética a la Enfermedad/genética , Genotipo , Imagen por Resonancia Magnética , Red Nerviosa/fisiología , Vías Nerviosas/fisiologíaRESUMEN
Amyloid (Aß) pathology is the earliest detectable pathophysiological event along the Alzheimer's continuum, which can be measured both in the cerebrospinal fluid (CSF) and by Positron Emission Tomography (PET). Yet, these biomarkers identify two distinct Aß pools, reflecting the clearance of soluble Aß as opposed to the presence of Aß fibrils in the brain. An open question is whether risk factors known to increase Alzheimer's' disease (AD) prevalence may promote an imbalance between soluble and deposited Aß. Unveiling such interactions shall aid our understanding of the biological pathways underlying Aß deposition and foster the design of effective prevention strategies. We assessed the impact of three major AD risk factors, such as age, APOE-ε4 and female sex, on the association between CSF and PET Aß, in two independent samples of non-demented individuals (ALFA: n = 320, ADNI: n = 682). We tested our hypotheses both in candidate regions of interest and in the whole brain using voxel-wise non-parametric permutations. All of the assessed risk factors induced a higher Aß deposition for any given level of CSF Aß42/40, although in distinct cerebral topologies. While age and sex mapped onto neocortical areas, the effect of APOE-ε4 was prominent in the medial temporal lobe, which represents a target of early tau deposition. Further, we found that the effects of age and APOE-ε4 was stronger in women than in men. Our data indicate that specific AD risk factors affect the spatial patterns of cerebral Aß aggregation, with APOE-ε4 possibly facilitating a co-localization between Aß and tau along the disease continuum.
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Apolipoproteínas E/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Biomarcadores/metabolismo , Encéfalo/metabolismo , Femenino , Humanos , Masculino , Tomografía de Emisión de Positrones/métodos , Proteínas tau/metabolismoRESUMEN
INTRODUCTION: Poor sleep quality is associated with cognitive outcomes in Alzheimer's disease (AD). We analyzed the associations between self-reported sleep quality and brain structure and function in cognitively unimpaired (CU) individuals. METHODS: CU adults (N = 339) underwent structural magnetic resonance imaging, lumbar puncture, and the Pittsburgh Sleep Quality Index (PSQI) questionnaire. A subset (N = 295) performed [18F] fluorodeoxyglucose positron emission tomography scans. Voxel-wise associations with gray matter volumes (GMv) and cerebral glucose metabolism (CMRGlu) were performed including interactions with cerebrospinal fluid (CSF) AD biomarkers status. RESULTS: Poorer sleep quality was associated with lower GMv and CMRGlu in the orbitofrontal and cingulate cortices independently of AD pathology. Self-reported sleep quality interacted with altered core AD CSF biomarkers in brain areas known to be affected in preclinical AD stages. DISCUSSION: Poor sleep quality may impact brain structure and function independently from AD pathology. Alternatively, AD-related neurodegeneration in areas involved in sleep-wake regulation may induce or worsen sleep disturbances. Highlights Poor sleep impacts brain structure and function independent of Alzheimer's disease (AD) pathology. Poor sleep exacerbates brain changes observed in preclinical AD. Sleep is an appealing therapeutic strategy for preventing AD.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Adulto , Humanos , Enfermedad de Alzheimer/patología , Encéfalo/patología , Sustancia Gris/patología , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones/métodos , Sueño , Biomarcadores/líquido cefalorraquídeo , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/metabolismoRESUMEN
PURPOSE: Glial activation is one of the earliest mechanisms to be altered in Alzheimer's disease (AD). Glial fibrillary acidic protein (GFAP) relates to reactive astrogliosis and can be measured in both cerebrospinal fluid (CSF) and blood. Plasma GFAP has been suggested to become altered earlier in AD than its CSF counterpart. Although astrocytes consume approximately half of the glucose-derived energy in the brain, the relationship between reactive astrogliosis and cerebral glucose metabolism is poorly understood. Here, we aimed to investigate the association between fluorodeoxyglucose ([18F]FDG) uptake and reactive astrogliosis, by means of GFAP quantified in both plasma and CSF for the same participants. METHODS: We included 314 cognitively unimpaired participants from the ALFA + cohort, 112 of whom were amyloid-ß (Aß) positive. Associations between GFAP markers and [18F]FDG uptake were studied. We also investigated whether these associations were modified by Aß and tau status (AT stages). RESULTS: Plasma GFAP was positively associated with glucose consumption in the whole brain, while CSF GFAP associations with [18F]FDG uptake were only observed in specific smaller areas like temporal pole and superior temporal lobe. These associations persisted when accounting for biomarkers of Aß pathology but became negative in Aß-positive and tau-positive participants (A + T +) in similar areas of AD-related hypometabolism. CONCLUSIONS: Higher astrocytic reactivity, probably in response to early AD pathological changes, is related to higher glucose consumption. With the onset of tau pathology, the observed uncoupling between astrocytic biomarkers and glucose consumption might be indicative of a failure to sustain the higher energetic demands required by reactive astrocytes.
Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Gliosis/diagnóstico por imagen , Gliosis/patología , Proteína Ácida Fibrilar de la Glía/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Biomarcadores/metabolismo , Inflamación , Glucosa/metabolismoRESUMEN
INTRODUCTION: Harboring two copies of the apolipoprotein E (APOE) ε2 allele strongly protects against Alzheimer's disease (AD). However, the effect of this genotype on gray matter (GM) volume in cognitively unimpaired individuals has not yet been described. METHODS: Multicenter brain magnetic resonance images (MRIs) from cognitively unimpaired ε2 homozygotes were matched (1:1) against all other APOE genotypes for relevant confounders (n = 223). GM volumes of ε2 genotypic groups were compared to each other and to the reference group (APOE ε3/ε3). RESULTS: Carrying at least one ε2 allele was associated with larger GM volumes in brain areas typically affected by AD and also in areas associated with cognitive resilience. APOE ε2 homozygotes, but not APOE ε2 heterozygotes, showed larger GM volumes in areas related to successful aging. DISCUSSION: In addition to the known resistance against amyloid-ß deposition, the larger GM volumes in key brain regions may confer APOE ε2 homozygotes additional protection against AD-related cognitive decline.
Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E2 , Disfunción Cognitiva , Dosificación de Gen , Alelos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteína E2/genética , Disfunción Cognitiva/genética , Genotipo , Sustancia Gris/patología , HumanosRESUMEN
The ε4 allele of the gene Apolipoprotein E is the major genetic risk factor for Alzheimer's Disease. APOE ε4 has been associated with changes in brain structure in cognitively impaired and unimpaired subjects, including atrophy of the hippocampus, which is one of the brain structures that is early affected by AD. In this work we analyzed the impact of APOE ε4 gene dose and its association with age, on hippocampal shape assessed with multivariate surface analysis, in a ε4-enriched cohort of n = 479 cognitively healthy individuals. Furthermore, we sought to replicate our findings on an independent dataset of n = 969 individuals covering the entire AD spectrum. We segmented the hippocampus of the subjects with a multi-atlas-based approach, obtaining high-dimensional meshes that can be analyzed in a multivariate way. We analyzed the effects of different factors including APOE, sex, and age (in both cohorts) as well as clinical diagnosis on the local 3D hippocampal surface changes. We found specific regions on the hippocampal surface where the effect is modulated by significant APOE ε4 linear and quadratic interactions with age. We compared between APOE and diagnosis effects from both cohorts, finding similarities between APOE ε4 and AD effects on specific regions, and suggesting that age may modulate the effect of APOE ε4 and AD in a similar way.
Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4/genética , Predisposición Genética a la Enfermedad , Hipocampo/anatomía & histología , Neuroimagen/métodos , Factores de Edad , Anciano , Anciano de 80 o más Años , Alelos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Atlas como Asunto , Estudios de Cohortes , Femenino , Heterocigoto , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana EdadRESUMEN
White matter hyperintensities (WMH) have been extensively associated with cognitive impairment and reductions in gray matter volume (GMv) independently. This study explored whether WMH lesion volume mediates the relationship between cerebral patterns of GMv and cognition in 521 (mean age 57.7 years) cognitively unimpaired middle-aged individuals. Episodic memory (EM) was measured with the Memory Binding Test and executive functions (EF) using five WAIS-IV subtests. WMH were automatically determined from T2 and FLAIR sequences and characterized using diffusion-weighted imaging (DWI) parameters. WMH volume was entered as a mediator in a voxel-wise mediation analysis relating GMv and cognitive performance (with both EM and EF composites and the individual tests independently). The mediation model was corrected by age, sex, education, number of Apolipoprotein E (APOE)-ε4 alleles and total intracranial volume. We found that even at very low levels of WMH burden in the cohort (median volume of 3.2 mL), higher WMH lesion volume was significantly associated with a widespread pattern of lower GMv in temporal, frontal, and cerebellar areas. WMH mediated the relationship between GMv and EF, mainly driven by processing speed, but not EM. DWI parameters in these lesions were compatible with incipient demyelination and axonal loss. These findings lead to the reflection on the relevance of the control of cardiovascular risk factors in middle-aged individuals as a valuable preventive strategy to reduce or delay cognitive decline.
Asunto(s)
Sustancia Gris/diagnóstico por imagen , Tiempo de Reacción/fisiología , Sustancia Blanca/diagnóstico por imagen , Adulto , Anciano , Apolipoproteínas E/genética , Axones/patología , Mapeo Encefálico , Cognición , Enfermedades Desmielinizantes/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Función Ejecutiva , Femenino , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Masculino , Memoria Episódica , Persona de Mediana Edad , Pruebas Neuropsicológicas , Escalas de WechslerRESUMEN
Among others, the existence of pathophysiological biomarkers such as cerebrospinal fluid (CSF) Aß-42, t-tau, and p-tau preceding the onset of Alzheimer's disease (AD) symptomatology has shifted the conceptualization of AD as a continuum. In addition, magnetic resonance imaging (MRI) enables the study of structural and functional cross-sectional correlates and longitudinal changes in vivo, and therefore, the combination of CSF data and imaging analyses emerges as a synergistic approach to understand the structural correlates related with specific AD-related biomarkers. In this chapter, we describe the methods used in neuroimaging that will allow researchers to combine data on CSF metabolites with imaging analyses.
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Péptidos beta-Amiloides/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Estudios Transversales , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/líquido cefalorraquídeo , Imagen por Resonancia Magnética/métodos , Neuroimagen , Biomarcadores/líquido cefalorraquídeoRESUMEN
Recent advances in deep learning and natural language processing (NLP) have broadened opportunities for automatic text processing in the medical field. However, the development of models for low-resource languages like French is challenged by limited datasets, often due to legal restrictions. Large-scale training of medical imaging models often requires extracting labels from radiology text reports. Current methods for report labeling primarily rely on sophisticated feature engineering based on medical domain knowledge or manual annotations by radiologists. These methods can be labor-intensive. In this work, we introduce a BERT-based approach for the efficient labeling of French mammogram image reports. Our method leverages both the expansive scale of existing rule-based systems and the precision of radiologist annotations. Our experimental results showcase the superiority of the proposed approach. It was initially fine-tuned on a limited dataset of radiologist annotations. Then, it underwent training on annotations generated by a rule-based labeler. Our findings reveal that our final model, MammoBERT, significantly outperforms the rule-based labeler while simultaneously reducing the necessity for radiologist annotations during training. This research not only advances the state of the art in medical image report labeling but also offers an efficient and effective solution for large-scale medical imaging model development.
Asunto(s)
Mamografía , Procesamiento de Lenguaje Natural , Mamografía/métodos , Humanos , Francia , Femenino , Aprendizaje Profundo , Neoplasias de la Mama/diagnóstico por imagenRESUMEN
BACKGROUND: Neurodegenerative diseases require collaborative, multisite research to comprehensively grasp their complex and diverse pathological progression; however, there is caution in aggregating global data due to data heterogeneity. In the current study, we investigated brain structure across stages of Alzheimer's disease (AD) and how relationships vary across sources of heterogeneity. METHODS: Using 6 international datasets (N > 27,000), associations of structural neuroimaging markers were investigated in relation to the AD continuum via meta-analysis. We investigated whether associations varied across elements of magnetic resonance imaging acquisition, study design, and populations. RESULTS: Modest differences in associations were found depending on how data were acquired; however, patterns were similar. Preliminary results suggested that neuroimaging marker-AD relationships differ across ethnic groups. CONCLUSIONS: Diversity in data offers unique insights into the neural substrate of AD; however, harmonized processing and transparency of data collection are needed. Global collaborations should embrace the inherent heterogeneity that exists in the data and quantify its contribution to research findings at the meta-analytical stage.
RESUMEN
The apolipoprotein E É4 allele is the primary genetic risk factor for the sporadic type of Alzheimer's disease. However, the mechanisms by which apolipoprotein E É4 are associated with neurodegeneration are still poorly understood. We applied the Neurite Orientation Dispersion Model to characterize the effects of apolipoprotein É4 and its interactions with age and education on cortical microstructure in cognitively normal individuals. Data from 1954 participants were included from the PREVENT-Dementia and ALFA (ALzheimer and FAmilies) studies (mean age = 57, 1197 non-carriers and 757 apolipoprotein E É4 carriers). Structural MRI datasets were processed with FreeSurfer v7.2. The Microstructure Diffusion Toolbox was used to derive Orientation Dispersion Index maps from diffusion MRI datasets. Primary analyses were focused on (i) the main effects of apolipoprotein E É4, and (ii) the interactions of apolipoprotein E É4 with age and education on lobar and vertex-wise Orientation Dispersion Index and implemented using Permutation Analysis of Linear Models. There were apolipoprotein E É4 × age interactions in the temporo-parietal and frontal lobes, indicating steeper age-dependent Orientation Dispersion Index changes in apolipoprotein E É4 carriers. Steeper age-related Orientation Dispersion Index declines were observed among apolipoprotein E É4 carriers with lower years of education. We demonstrated that apolipoprotein E É4 worsened age-related Orientation Dispersion Index decreases in brain regions typically associated with atrophy patterns of Alzheimer's disease. This finding also suggests that apolipoprotein E É4 may hasten the onset age of dementia by accelerating age-dependent reductions in cortical Orientation Dispersion Index.
RESUMEN
PURPOSE: To determine whether the APOE-ε4 allele modulates the relationship between regional ß-amyloid (Aß) accumulation and cognitive change in middle-aged cognitively unimpaired (CU) participants. METHODS: The 352 CU participants (mean aged 61.1 [4.7] years) included completed two cognitive assessments (average interval 3.34 years), underwent [18F]flutemetamol Aß positron emission tomography (PET), T1w magnetic resonance imaging (MRI), as well as APOE genotyping. Global and regional Aß PET positivity was assessed across five regions-of-interest by visual reading (VR) and regional Centiloids. Linear regression models were developed to examine the interaction between regional and global Aß PET positivity and APOE-ε4 status on longitudinal cognitive change assessed with the Preclinical Alzheimer's Cognitive Composite (PACC), episodic memory, and executive function, after controlling for age, sex, education, cognitive baseline scores, and hippocampal volume. RESULTS: In total, 57 participants (16.2%) were VR+ of whom 41 (71.9%) were APOE-ε4 carriers. No significant APOE-ε4*global Aß PET interactions were associated with cognitive change for any cognitive test. However, APOE-ε4 carriers who were VR+ in temporal areas (n = 19 [9.81%], p = 0.04) and in the striatum (n = 8 [4.14%], p = 0.01) exhibited a higher decline in the PACC. The temporal areas findings were replicated when regional PET positivity was determined with Centiloid values. Regionally, VR+ in the striatum was associated with higher memory decline. As for executive function, interactions between APOE-ε4 and regional VR+ were found in temporal and parietal regions, and in the striatum. CONCLUSION: CU APOE-ε4 carriers with a positive Aß PET VR in regions known to accumulate amyloid at later stages of the Alzheimer's disease (AD) continuum exhibited a steeper cognitive decline. This work supports the contention that regional VR of Aß PET might convey prognostic information about future cognitive decline in individuals at higher risk of developing AD. CLINICALTRIALS: gov Identifier: NCT02485730. Registered 20 June 2015 https://clinicaltrials.gov/ct2/show/NCT02485730 and ClinicalTrials.gov Identifier:NCT02685969. Registered 19 February 2016 https://clinicaltrials.gov/ct2/show/NCT02685969 .
RESUMEN
Brain-age can be inferred from structural neuroimaging and compared to chronological age (brain-age delta) as a marker of biological brain aging. Accelerated aging has been found in neurodegenerative disorders like Alzheimer's disease (AD), but its validation against markers of neurodegeneration and AD is lacking. Here, imaging-derived measures from the UK Biobank dataset (N=22,661) were used to predict brain-age in 2,314 cognitively unimpaired (CU) individuals at higher risk of AD and mild cognitive impaired (MCI) patients from four independent cohorts with available biomarker data: ALFA+, ADNI, EPAD, and OASIS. Brain-age delta was associated with abnormal amyloid-ß, more advanced stages (AT) of AD pathology and APOE-ε4 status. Brain-age delta was positively associated with plasma neurofilament light, a marker of neurodegeneration, and sex differences in the brain effects of this marker were found. These results validate brain-age delta as a non-invasive marker of biological brain aging in non-demented individuals with abnormal levels of biomarkers of AD and axonal injury.
Asunto(s)
Enfermedad de Alzheimer , Humanos , Masculino , Femenino , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Péptidos beta-Amiloides/metabolismo , Neuroimagen/métodos , Biomarcadores , Aprendizaje AutomáticoRESUMEN
Most people have a soundtrack of life, a set of special musical pieces closely linked to certain biographical experiences. Autobiographical memories (AM) and music listening (ML) involve complex mental processes ruled by differentiate brain networks. The aim of the paper was to determine the way both networks interact in linked occurrences. We performed an fMRI experiment on 31 healthy participants (age: 32.4 ± 7.6, 11 men, 4 left-handers). Participants had to recall AMs prompted by music they reported to be associated with personal biographical events (LMM: linked AM-ML events). In the main control task, participants were prompted to recall emotional AMs while listening known tracks from a pool of popular music (UMM: unlinked AM-ML events). We wanted to investigate to what extent LMM network exceeded the overlap of AM and ML networks by contrasting the activation obtained in LMM versus UMM. The contrast LMM>UMM showed the areas (at P < 0.05 FWE corrected at voxel level and cluster size>20): right frontal inferior operculum, frontal middle gyrus, pars triangularis of inferior frontal gyrus, occipital superior gyrus and bilateral basal ganglia (caudate, putamen and pallidum), occipital (middle and inferior), parietal (inferior and superior), precentral and cerebellum (6, 7 L, 8 and vermis 6 and 7). Complementary results were obtained from additional control tasks. Provided part of tLMM>UMM areas might not be related to ML-AM linkage, we assessed LMM brain network by an independent component analysis (ICA) on contrast images. Results from ICA suggest the existence of a cortico-ponto-cerebellar network including left precuneus, bilateral anterior cingulum, parahippocampal gyri, frontal inferior operculum, ventral anterior part of the insula, frontal medial orbital gyri, caudate nuclei, cerebellum 6 and vermis, which might rule the ML-induced retrieval of AM in closely linked AM-ML events. This topography may suggest that the pathway by which ML is linked to AM is attentional and directly related to perceptual processing, involving salience network, instead of the natural way of remembering typically associated with default mode network.
Asunto(s)
Encéfalo/fisiología , Emociones/fisiología , Imagen por Resonancia Magnética , Memoria Episódica , Música/psicología , Red Nerviosa/fisiología , Ganglios Basales , Cerebelo , Femenino , Lóbulo Frontal , Humanos , Masculino , Recuerdo Mental/fisiología , Lóbulo ParietalRESUMEN
Higher grey matter volumes/cortical thickness and fluorodeoxyglucose uptake have been consistently found in cognitively unimpaired individuals with abnormal Alzheimer's disease biomarkers compared with those with normal biomarkers. It has been hypothesized that such transient increases may be associated with neuroinflammatory mechanisms triggered in response to early Alzheimer's pathology. Here, we evaluated, in the earliest stages of the Alzheimer's continuum, associations between grey matter volume and fluorodeoxyglucose uptake with CSF biomarkers of several pathophysiological mechanisms known to be altered in preclinical Alzheimer's disease stages. We included 319 cognitively unimpaired participants from the ALFA+ cohort with available structural MRI, fluorodeoxyglucose PET and CSF biomarkers of amyloid-ß and tau pathology (phosphorylated tau and total tau), synaptic dysfunction (neurogranin), neuronal and axonal injury (neurofilament light), glial activation (soluble triggering receptor on myeloid cells 2, YKL40, GFAP, interleukin-6 and S100b) and α-synuclein using the Roche NeuroToolKit. We first used the amyloid-ß/tau framework to investigate differences in the neuroimaging biomarkers between preclinical Alzheimer's disease stages. Then, we looked for associations between the neuroimaging markers and all the CSF markers. Given the non-negative nature of the concentrations of CSF biomarkers and their high collinearity, we clustered them using non-negative matrix factorization approach (components) and sought associations with the imaging markers. By groups, higher grey matter volumes were found in the amyloid-ß-positive tau-negative participants with respect to the reference amyloid-ß-negative tau-negative group. Both amyloid-ß and tau-positive participants showed higher fluorodeoxyglucose uptake than tau-negative individuals. Using the obtained components, we observed that tau pathology accompanied by YKL-40 (astrocytic marker) was associated with higher grey matter volumes and fluorodeoxyglucose uptake in extensive brain areas. Higher grey matter volumes in key Alzheimer-related regions were also found in association with two other components characterized by a higher expression of amyloid-ß in combination with different glial markers: one with higher GFAP and S100b levels (astrocytic markers) and the other one with interleukin-6 (pro-inflammatory). Notably, these components' expression had different behaviours across amyloid-ß/tau stages. Taken together, our results show that CSF amyloid-ß and phosphorylated tau, in combination with different aspects of glial response, have distinctive associations with higher grey matter volumes and increased glucose metabolism in key Alzheimer-related regions. These mechanisms combine to produce transient higher grey matter volumes and fluorodeoxyglucose uptake at the earliest stages of the Alzheimer's continuum, which may revert later on the course of the disease when neurodegeneration drives structural and metabolic cerebral changes.
RESUMEN
White matter hyperintensities (WMHs) have a heterogeneous aetiology, associated with both vascular risk factors and amyloidosis due to Alzheimer's disease. While spatial distribution of both amyloid and WM lesions carry important information for the underlying pathogenic mechanisms, the regional relationship between these two pathologies and their joint contribution to early cognitive deterioration remains largely unexplored. We included 662 non-demented participants from three Amyloid Imaging to Prevent Alzheimer's disease (AMYPAD)-affiliated cohorts: EPAD-LCS (N = 176), ALFA+ (N = 310), and EMIF-AD PreclinAD Twin60++ (N = 176). Using PET imaging, cortical amyloid burden was assessed regionally within early accumulating regions (medial orbitofrontal, precuneus, and cuneus) and globally, using the Centiloid method. Regional WMH volume was computed using Bayesian Model Selection. Global associations between WMH, amyloid, and cardiovascular risk scores (Framingham and CAIDE) were assessed using linear models. Partial least square (PLS) regression was used to identify regional associations. Models were adjusted for age, sex, and APOE-e4 status. Individual PLS scores were then related to cognitive performance in 4 domains (attention, memory, executive functioning, and language). While no significant global association was found, the PLS model yielded two components of interest. In the first PLS component, a fronto-parietal WMH pattern was associated with medial orbitofrontal-precuneal amyloid, vascular risk, and age. Component 2 showed a posterior WMH pattern associated with precuneus-cuneus amyloid, less related to age or vascular risk. Component 1 was associated with lower performance in all cognitive domains, while component 2 only with worse memory. In a large pre-dementia population, we observed two distinct patterns of regional associations between WMH and amyloid burden, and demonstrated their joint influence on cognitive processes. These two components could reflect the existence of vascular-dependent and -independent manifestations of WMH-amyloid regional association that might be related to distinct primary pathophysiology.
RESUMEN
BACKGROUND AND OBJECTIVES: Increased anxious-depressive symptomatology is observed in the preclinical stage of Alzheimer disease (AD), which may accelerate disease progression. We investigated whether ß-amyloid, cortical thickness in medial temporal lobe structures, neuroinflammation, and sociodemographic factors were associated with greater anxious-depressive symptoms during the COVID-19 confinement. METHODS: This retrospective observational study included cognitively unimpaired older adults from the Alzheimer's and Families cohort, the majority with a family history of sporadic AD. Participants performed the Hospital Anxiety and Depression Scale (HADS) during the COVID-19 confinement. A subset had available retrospective (on average: 2.4 years before) HADS assessment, amyloid [18F] flutemetamol PET and structural MRI scans, and CSF markers of neuroinflammation (interleukin-6 [IL-6], triggering receptor expressed on myeloid cells 2, and glial fibrillary acidic protein levels). We performed multivariable linear regression models to investigate the associations of prepandemic AD-related biomarkers and sociodemographic factors with HADS scores during the confinement. We further performed an analysis of covariance to adjust by participants' prepandemic anxiety-depression levels. Finally, we explored the role of stress and lifestyle changes (sleep patterns, eating, drinking, smoking habits, and medication use) on the tested associations and performed sex-stratified analyses. RESULTS: We included 921 (254 with AD biomarkers) participants. ß-amyloid positivity (B = 3.73; 95% CI = 1.1 to 6.36; p = 0.006), caregiving (B = 1.37; 95% CI 0.24-2.5; p = 0.018), sex (women: B = 1.95; 95% CI 1.1-2.79; p < 0.001), younger age (B = -0.12; 95% CI -0.18 to -0.052; p < 0.001), and lower education (B = -0.16; 95% CI -0.28 to -0.042; p = 0.008) were associated with greater anxious-depressive symptoms during the confinement. Considering prepandemic anxiety-depression levels, we further observed an association between lower levels of CSF IL-6 (B = -5.11; 95% CI -10.1 to -0.13; p = 0.044) and greater HADS scores. The results were independent of stress-related variables and lifestyle changes. Stratified analysis revealed that the associations were mainly driven by women. DISCUSSION: Our results link AD-related pathophysiology and neuroinflammation with greater anxious-depressive symptomatology during the COVID-19-related confinement, notably in women. AD pathophysiology may increase neuropsychiatric symptomatology in response to stressors. This association may imply a worse clinical prognosis in people at risk for AD after the pandemic and thus deserves to be considered by clinicians. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov Identifier NCT02485730.
Asunto(s)
Enfermedad de Alzheimer , COVID-19 , Anciano , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Ansiedad , Biomarcadores , Depresión , Femenino , Proteína Ácida Fibrilar de la Glía , Humanos , Interleucina-6 , Masculino , Tomografía de Emisión de Positrones , Estudios Retrospectivos , Proteínas tau/metabolismoRESUMEN
Telomere length (TL) is associated with biological aging, consequently influencing the risk of age-related diseases such as Alzheimer's disease (AD). We aimed to evaluate the potential causal role of TL in AD endophenotypes (i.e., cognitive performance, N = 2233; brain age and AD-related signatures, N = 1134; and cerebrospinal fluid biomarkers (CSF) of AD and neurodegeneration, N = 304) through a Mendelian randomization (MR) analysis. Our analysis was conducted in the context of the ALFA (ALzheimer and FAmilies) study, a population of cognitively healthy individuals at risk of AD. A total of 20 single nucleotide polymorphisms associated with TL were used to determine the effect of TL on AD endophenotypes. Analyses were adjusted by age, sex, and years of education. Stratified analyses by APOE-É4 status and polygenic risk score of AD were conducted. MR analysis revealed significant associations between genetically predicted longer TL and lower levels of CSF Aß and higher levels of CSF NfL only in APOE-É4 non-carriers. Moreover, inheriting longer TL was associated with greater cortical thickness in age and AD-related brain signatures and lower levels of CSF p-tau among individuals at a high genetic predisposition to AD. Further observational analyses are warranted to better understand these associations.