Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36983004

RESUMEN

Perinatal brain injury following hypoxia-ischemia (HI) is characterized by high mortality rates and long-term disabilities. Previously, we demonstrated that depletion of Annexin A1, an essential mediator in BBB integrity, was associated with a temporal loss of blood-brain barrier (BBB) integrity after HI. Since the molecular and cellular mechanisms mediating the impact of HI are not fully scrutinized, we aimed to gain mechanistic insight into the dynamics of essential BBB structures following global HI in relation to ANXA1 expression. Global HI was induced in instrumented preterm ovine fetuses by transient umbilical cord occlusion (UCO) or sham occlusion (control). BBB structures were assessed at 1, 3, or 7 days post-UCO by immunohistochemical analyses of ANXA1, laminin, collagen type IV, and PDGFRß for pericytes. Our study revealed that within 24 h after HI, cerebrovascular ANXA1 was depleted, which was followed by depletion of laminin and collagen type IV 3 days after HI. Seven days post-HI, increased pericyte coverage, laminin and collagen type IV expression were detected, indicating vascular remodeling. Our data demonstrate novel mechanistic insights into the loss of BBB integrity after HI, and effective strategies to restore BBB integrity should potentially be applied within 48 h after HI. ANXA1 has great therapeutic potential to target HI-driven brain injury.


Asunto(s)
Anexina A1 , Lesiones Encefálicas , Hipoxia-Isquemia Encefálica , Femenino , Embarazo , Animales , Ovinos , Humanos , Animales Recién Nacidos , Hipoxia-Isquemia Encefálica/metabolismo , Anexina A1/metabolismo , Laminina/metabolismo , Colágeno Tipo IV/metabolismo , Lesiones Encefálicas/metabolismo , Encéfalo/metabolismo
2.
Pediatr Res ; 90(3): 549-558, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33070161

RESUMEN

BACKGROUND: Chorioamnionitis, an intrauterine infection of the placenta and fetal membranes, is a common risk factor for adverse pulmonary outcomes in premature infants including BPD, which is characterized by an arrest in alveolar development. As endogenous epithelial stem/progenitor cells are crucial for organogenesis and tissue repair, we examined whether intrauterine inflammation negatively affects these essential progenitor pools. METHODS: In an ovine chorioamnionitis model, fetuses were intra-amniotically exposed to LPS, 2d or 7d (acute inflammation) before preterm delivery at 125d of gestation, or to intra-amniotic Ureaplasma parvum for 42d (chronic inflammation). Lung function, pulmonary endogenous epithelial stem/progenitor pools, and downstream functional markers were studied. RESULTS: Lung function was improved in the 7d LPS and 42d Ureaplasma groups. However, intrauterine inflammation caused a loss of P63+ basal cells in proximal airways and reduced SOX-9 expression and TTF-1+ Club cells in distal airways. Attenuated type-2 cell numbers were associated with lower proliferation and reduced type-1 cell marker Aqp5 expression, indicative for impaired progenitor function. Chronic Ureaplasma infection only affected distal airways, whereas acute inflammation affected stem/progenitor populations throughout the lungs. CONCLUSIONS: Acute and chronic prenatal inflammation improve lung function at the expense of stem/progenitor alterations that potentially disrupt normal lung development, thereby predisposing to adverse postnatal outcomes. IMPACT: In this study, prenatal inflammation improved lung function at the expense of stem/progenitor alterations that potentially disrupt normal lung development, thereby predisposing to adverse postnatal outcomes. Importantly, we demonstrate that these essential alterations can already be initiated before birth. So far, stem/progenitor dysfunction has only been shown postnatally. This study indicates that clinical protocols to target the consequences of perinatal inflammatory stress for the immature lungs should be initiated as early as possible and ideally in utero. Within this context, our data suggest that interventions, which promote function or repair of endogenous stem cells in the lungs, hold great promise.


Asunto(s)
Corioamnionitis/patología , Pulmón/patología , Células Madre/patología , Animales , Células Epiteliales/patología , Femenino , Embarazo , Nacimiento Prematuro , Ovinos
3.
J Neuroinflammation ; 15(1): 113, 2018 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-29673373

RESUMEN

BACKGROUND: Antenatal infection (i.e., chorioamnionitis) is an important risk factor for adverse neurodevelopmental outcomes after preterm birth. Destructive and developmental disturbances of the white matter are hallmarks of preterm brain injury. Understanding the temporal effects of antenatal infection in relation to the onset of neurological injury is crucial for the development of neurotherapeutics for preterm infants. However, these dynamics remain unstudied. METHODS: Time-mated ewes were intra-amniotically injected with lipopolysaccharide at 5, 12, or 24 h or 2, 4, 8, or 15 days before preterm delivery at 125 days gestational age (term ~ 150 days). Post mortem analyses for peripheral immune activation, neuroinflammation, and white matter/neuronal injury were performed. Moreover, considering the neuroprotective potential of erythropoietin (EPO) for perinatal brain injury, we evaluated (phosphorylated) EPO receptor (pEPOR) expression in the fetal brain following LPS exposure. RESULTS: Intra-amniotic exposure to this single bolus of LPS resulted in a biphasic systemic IL-6 and IL-8 response. In the developing brain, intra-amniotic LPS exposure induces a persistent microgliosis (IBA-1 immunoreactivity) but a shorter-lived increase in the pro-inflammatory marker COX-2. Cell death (caspase-3 immunoreactivity) was only observed when LPS exposure was greater than 8 days in the white matter, and there was a reduction in the number of (pre) oligodendrocytes (Olig2- and PDGFRα-positive cells) within the white matter at 15 days post LPS exposure only. pEPOR expression displayed a striking biphasic regulation following LPS exposure which may help explain contradicting results among clinical trials that tested EPO for the prevention of preterm brain injury. CONCLUSION: We provide increased understanding of the spatiotemporal pathophysiological changes in the preterm brain following intra-amniotic inflammation which may aid development of new interventions or implement interventions more effectively to prevent perinatal brain damage.


Asunto(s)
Lesiones Encefálicas/etiología , Corioamnionitis/etiología , Inflamación/etiología , Nacimiento Prematuro/fisiopatología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Líquido Amniótico/efectos de los fármacos , Animales , Femenino , Feto , Edad Gestacional , Lipopolisacáridos/toxicidad , Embarazo , Nacimiento Prematuro/inducido químicamente , Ovinos , Factores de Tiempo
4.
Dev Neurosci ; 39(6): 472-486, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28848098

RESUMEN

Chorioamnionitis is associated with adverse neurodevelopmental outcomes in preterm infants. Ureaplasma spp. are the microorganisms most frequently isolated from the amniotic fluid of women diagnosed with chorioamnionitis. However, controversy remains concerning the role of Ureaplasma spp. in the pathogenesis of neonatal brain injury. We hypothesize that reexposure to an inflammatory trigger during the perinatal period might be responsible for the variation in brain outcomes of preterms following Ureaplasma-driven chorioamnionitis. To investigate these clinical scenarios, we performed a detailed multimodal study in which ovine neurodevelopmental outcomes were assessed following chronic intra-amniotic Ureaplasma parvum (UP) infection either alone or combined with subsequent lipopolysaccharide (LPS) exposure. We show that chronic intra-amniotic UP exposure during the second trimester provoked a decrease in astrocytes, increased oligodendrocyte numbers, and elevated 5-methylcytosine levels. In contrast, short-term LPS exposure before preterm birth induced increased microglial activation, myelin loss, elevation of 5-hydroxymethylcytosine levels, and lipid profile changes. These LPS-induced changes were prevented by chronic preexposure to UP (preconditioning). These data indicate that chronic UP exposure has dual effects on preterm brain development in utero. On the one hand, prolonged UP exposure causes detrimental cerebral changes that may predispose to adverse postnatal clinical outcomes. On the other, chronic intra-amniotic UP exposure preconditions the brain against a second inflammatory hit. This study demonstrates that microbial interactions and the timing and duration of the inflammatory insults determine the effects on the fetal brain. Therefore, this study helps to understand the complex and diverse postnatal neurological outcomes following UP driven chorioamnionitis.


Asunto(s)
Encéfalo/embriología , Corioamnionitis/patología , Desarrollo Fetal/efectos de los fármacos , Infecciones por Ureaplasma , Ureaplasma , Líquido Amniótico/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Femenino , Lipopolisacáridos/farmacología , Embarazo , Ovinos
5.
Am J Physiol Lung Cell Mol Physiol ; 310(1): L1-7, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26519206

RESUMEN

Chorioamnionitis, an inflammatory reaction of the fetal membranes to microbes, is an important cause of preterm birth and associated with inflammation-driven lung injury. However, inflammation in utero overcomes immaturity of the premature lung by inducing surfactant lipids and lung gas volume. Previously, we found that lipopolysaccharide (LPS)-induced chorioamnionitis resulted in pulmonary inflammation with increased effector T cells and decreased regulatory T cell (Treg) numbers. Because Tregs are crucial for immune regulation, we assessed the effects of interleukin (IL)-2-driven selective Treg expansion on the fetal lung in an ovine chorioamnionitis model. Instrumented fetuses received systemic prophylactic IL-2 treatment [118 days gestational age (dGA)] with or without subsequent exposure to intra-amniotic LPS (122 dGA). Following delivery at 129 dGA (term 147 dGA), pulmonary and systemic inflammation, morphological changes, lung gas volume, and phospholipid concentration were assessed. IL-2 pretreatment increased the FoxP3(+)/CD3(+) ratio, which was associated with reduced CD3-positive cells in the fetal lungs of LPS-exposed animals. Prophylactic IL-2 treatment did not prevent pulmonary accumulation of myeloperoxidase- and PU.1-positive cells or elevation of bronchoalveolar lavage fluid IL-8 and systemic IL-6 concentrations in LPS-exposed animals. Unexpectedly, IL-2 treatment improved fetal lung function of control lambs as indicated by increased disaturated phospholipids and improved lung gas volume. In conclusion, systemic IL-2 treatment in utero preferentially expanded Tregs and improved lung gas volume and disaturated phospholipids. These beneficial effects on lung function were maintained despite the moderate immunomodulatory effects of prophylactic IL-2 in the course of chorioamnionitis.


Asunto(s)
Corioamnionitis/tratamiento farmacológico , Feto/efectos de los fármacos , Interleucina-2/farmacología , Neumonía/tratamiento farmacológico , Animales , Femenino , Edad Gestacional , Lipopolisacáridos/farmacología , Neumonía/complicaciones , Neumonía/inmunología , Embarazo , Ovinos
6.
Mol Med ; 22: 244-257, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27257938

RESUMEN

Perinatal asphyxia, a condition of impaired gas exchange during birth, leads to fetal hypoxia-ischemia (HI) and is associated with postnatal adverse outcomes including intestinal dysmotility and necrotizing enterocolitis (NEC). Evidence from adult animal models of transient, locally-induced intestinal HI has shown that inflammation is essential in HI-induced injury of the gut. Importantly, mesenchymal stem cell (MSC) treatment prevented this HI-induced intestinal damage. We therefore assessed whether fetal global HI induced inflammation, injury and developmental changes in the gut and whether intravenous MSC administration ameliorated these HI-induced adverse intestinal effects. In a preclinical ovine model, fetuses were subjected to umbilical cord occlusion (UCO), with or without MSC treatment, and sacrificed 7 days after UCO. Global HI increased the number of myeloperoxidase positive cells in the mucosa, upregulated mRNA levels of interleukin (IL)-1ß and IL-17 in gut tissue and caused T-cell invasion in the intestinal muscle layer. Intestinal inflammation following global HI was associated with increased Ki67+ cells in the muscularis and subsequent muscle hyperplasia. Global HI caused distortion of glial fibrillary acidic protein immunoreactivity in the enteric glial cells and increased synaptophysin and serotonin expression in the myenteric ganglia. Intravenous MSC treatment did not ameliorate these HI-induced adverse intestinal events. Global HI resulted in intestinal inflammation and enteric nervous system abnormalities which are clinically associated with postnatal complications including feeding intolerance, altered gastrointestinal transit and NEC. The intestinal histopathological changes were not prevented by intravenous MSC treatment directly after HI, indicating that alternative treatment regimens for cell-based therapies should be explored.

7.
J Neuroinflammation ; 13: 29, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26842664

RESUMEN

BACKGROUND: Intra-amniotic Candida albicans (C. Albicans) infection is associated with preterm birth and high morbidity and mortality rates. Survivors are prone to adverse neurodevelopmental outcomes. The mechanisms leading to these adverse neonatal brain outcomes remain largely unknown. To better understand the mechanisms underlying C. albicans-induced fetal brain injury, we studied immunological responses and structural changes of the fetal brain in a well-established translational ovine model of intra-amniotic C. albicans infection. In addition, we tested whether these potential adverse outcomes of the fetal brain were improved in utero by antifungal treatment with fluconazole. METHODS: Pregnant ewes received an intra-amniotic injection of 10(7) colony-forming units C. albicans or saline (controls) at 3 or 5 days before preterm delivery at 0.8 of gestation (term ~ 150 days). Fetal intra-amniotic/intra-peritoneal injections of fluconazole or saline (controls) were administered 2 days after C. albicans exposure. Post mortem analyses for fungal burden, peripheral immune activation, neuroinflammation, and white matter/neuronal injury were performed to determine the effects of intra-amniotic C. albicans and fluconazole treatment. RESULTS: Intra-amniotic exposure to C. albicans caused a severe systemic inflammatory response, illustrated by a robust increase of plasma interleukin-6 concentrations. Cerebrospinal fluid cultures were positive for C. albicans in the majority of the 3-day C. albicans-exposed animals whereas no positive cultures were present in the 5-day C. albicans-exposed and fluconazole-treated animals. Although C. albicans was not detected in the brain parenchyma, a neuroinflammatory response in the hippocampus and white matter was seen which was characterized by increased microglial and astrocyte activation. These neuroinflammatory changes were accompanied by structural white matter injury. Intra-amniotic fluconazole reduced fetal mortality but did not attenuate neuroinflammation and white matter injury. CONCLUSIONS: Intra-amniotic C. albicans exposure provoked acute systemic and neuroinflammatory responses with concomitant white matter injury. Fluconazole treatment prevented systemic inflammation without attenuating cerebral inflammation and injury.


Asunto(s)
Lesiones Encefálicas/etiología , Candida albicans/patogenicidad , Candidiasis/complicaciones , Encefalitis/etiología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Animales , Lesiones Encefálicas/microbiología , Lesiones Encefálicas/patología , Proteínas de Unión al Calcio , Caspasa 3/metabolismo , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Encefalitis/microbiología , Encefalitis/patología , Ensayo de Inmunoadsorción Enzimática , Femenino , Fluoresceínas/metabolismo , Factor Estimulante de Colonias de Granulocitos/metabolismo , Interleucina-3/metabolismo , Interleucina-6/metabolismo , Antígeno Ki-67/metabolismo , Masculino , Proteínas de Microfilamentos , Proteína Básica de Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Embarazo , Proteínas Recombinantes de Fusión/metabolismo , Ovinos
8.
J Neuroinflammation ; 12: 241, 2015 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-26700169

RESUMEN

BACKGROUND: Preterm infants are at risk for hypoxic-ischemic encephalopathy. No therapy exists to treat this brain injury and subsequent long-term sequelae. We have previously shown in a well-established pre-clinical model of global hypoxia-ischemia (HI) that mesenchymal stem cells are a promising candidate for the treatment of hypoxic-ischemic brain injury. In the current study, we investigated the neuroprotective capacity of multipotent adult progenitor cells (MAPC®), which are adherent bone marrow-derived cells of an earlier developmental stage than mesenchymal stem cells and exhibiting more potent anti-inflammatory and regenerative properties. METHODS: Instrumented preterm sheep fetuses were subjected to global hypoxia-ischemia by 25 min of umbilical cord occlusion at a gestational age of 106 (term ~147) days. During a 7-day reperfusion period, vital parameters (e.g., blood pressure and heart rate; baroreceptor reflex) and (amplitude-integrated) electroencephalogram were recorded. At the end of the experiment, the preterm brain was studied by histology. RESULTS: Systemic administration of MAPC therapy reduced the number and duration of seizures and prevented decrease in baroreflex sensitivity after global HI. In addition, MAPC cells prevented HI-induced microglial proliferation in the preterm brain. These anti-inflammatory effects were associated with MAPC-induced prevention of hypomyelination after global HI. Besides attenuation of the cerebral inflammatory response, our findings showed that MAPC cells modulated the peripheral splenic inflammatory response, which has been implicated in the etiology of hypoxic-ischemic injury in the preterm brain. CONCLUSIONS: In a pre-clinical animal model MAPC cell therapy improved the functional and structural outcome of the preterm brain after global HI. Future studies should establish the mechanism and long-term therapeutic effects of neuroprotection established by MAPC cells in the developing preterm brain exposed to HI. Our study may form the basis for future clinical trials, which will evaluate whether MAPC therapy is capable of reducing neurological sequelae in preterm infants with hypoxic-ischemic encephalopathy.


Asunto(s)
Células Madre Adultas/trasplante , Hipoxia-Isquemia Encefálica/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Nacimiento Prematuro , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Feto , Ovinos
9.
Pediatr Pulmonol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958257

RESUMEN

INTRODUCTION: Preterm infants close to viability commonly require mechanical ventilation (MV) for respiratory distress syndrome. Despite commonly used lung-sparing ventilation techniques, rapid lung expansion during MV induces lung injury, a risk factor for bronchopulmonary dysplasia. This study investigates whether ventilation with optimized lung expansion is feasible and whether it can further minimize lung injury. Therefore, optimized lung expansion ventilation (OLEV) was compared to conventional volume targeted ventilation. METHODS: Twenty preterm lambs were surgically delivered after 132 days of gestation. Nine animals were randomized to receive OLEV for 24 h, and seven received standard MV. Four unventilated animals served as controls (NV). Lungs were sampled for histological analysis at the end of the experimental period. RESULTS: Ventilation with OLEV was feasible, resulting in a significantly higher mean ventilation pressure (0.7-1.3 mbar). Temporary differences in oxygenation between OLEV and MV did not reach clinically relevant levels. Ventilation in general tended to result in higher lung injury scores compared to NV, without differences between OLEV and MV. While pro-inflammatory tumor necrosis factor-α messenger RNA (mRNA) levels increased in both ventilation groups compared to NV, only animals in the MV group showed a higher number of CD45-positive cells in the lung. In contrast, mean (standard deviations) surfactant protein-B mRNA levels were significantly lower in OLEV, 0.63 (0.38) compared to NV 1.03 (0.32) (p = .023, one-way analysis of variance). CONCLUSION: In conclusion, a small reduction in pulmonary inflammation after 24 h of support with OLEV suggests potential to reduce preterm lung injury.

10.
Regen Ther ; 27: 207-217, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38576851

RESUMEN

Background: Perinatal inflammation increases the risk for bronchopulmonary dysplasia in preterm neonates, but the underlying pathophysiological mechanisms remain largely unknown. Given their anti-inflammatory and regenerative capacity, multipotent adult progenitor cells (MAPC) are a promising cell-based therapy to prevent and/or treat the negative pulmonary consequences of perinatal inflammation in the preterm neonate. Therefore, the pathophysiology underlying adverse preterm lung outcomes following perinatal inflammation and pulmonary benefits of MAPC treatment at the interface of prenatal inflammatory and postnatal ventilation exposures were elucidated. Methods: Instrumented ovine fetuses were exposed to intra-amniotic lipopolysaccharide (LPS 5 mg) at 125 days gestation to induce adverse systemic and peripheral organ outcomes. MAPC (10 × 106 cells) or saline were administered intravenously two days post LPS exposure. Fetuses were delivered preterm five days post MAPC treatment and either killed humanely immediately or mechanically ventilated for 72 h. Results: Antenatal LPS exposure resulted in inflammation and decreased alveolar maturation in the preterm lung. Additionally, LPS-exposed ventilated lambs showed continued pulmonary inflammation and cell junction loss accompanied by pulmonary edema, ultimately resulting in higher oxygen demand. MAPC therapy modulated lung inflammation, prevented loss of epithelial and endothelial barriers and improved lung maturation in utero. These MAPC-driven improvements remained evident postnatally, and prevented concomitant pulmonary edema and functional loss. Conclusion: In conclusion, prenatal inflammation sensitizes the underdeveloped preterm lung to subsequent postnatal inflammation, resulting in injury, disturbed development and functional impairment. MAPC therapy partially prevents these changes and is therefore a promising approach for preterm infants to prevent adverse pulmonary outcomes.

11.
J Neuroinflammation ; 10: 13, 2013 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-23347579

RESUMEN

BACKGROUND: Hypoxic-ischemic encephalopathy (HIE) is one of the most important causes of brain injury in preterm infants. Preterm HIE is predominantly caused by global hypoxia-ischemia (HI). In contrast, focal ischemia is most common in the adult brain and known to result in cerebral inflammation and activation of the peripheral immune system. These inflammatory responses are considered to play an important role in the adverse outcomes following brain ischemia. In this study, we hypothesize that cerebral and peripheral immune activation is also involved in preterm brain injury after global HI. METHODS: Preterm instrumented fetal sheep were exposed to 25 minutes of umbilical cord occlusion (UCO) (n = 8) at 0.7 gestation. Sham-treated animals (n = 8) were used as a control group. Brain sections were stained for ionized calcium binding adaptor molecule 1 (IBA-1) to investigate microglial proliferation and activation. The peripheral immune system was studied by assessment of circulating white blood cell counts, cellular changes of the spleen and influx of peripheral immune cells (MPO-positive neutrophils) into the brain. Pre-oligodendrocytes (preOLs) and myelin basic protein (MBP) were detected to determine white matter injury. Electro-encephalography (EEG) was recorded to assess functional impairment by interburst interval (IBI) length analysis. RESULTS: Global HI resulted in profound activation and proliferation of microglia in the hippocampus, periventricular and subcortical white matter. In addition, non-preferential mobilization of white blood cells into the circulation was observed within 1 day after global HI and a significant influx of neutrophils into the brain was detected 7 days after the global HI insult. Furthermore, global HI resulted in marked involution of the spleen, which could not be explained by increased splenic apoptosis. In concordance with cerebral inflammation, global HI induced severe brain atrophy, region-specific preOL vulnerability, hypomyelination and persistent suppressed brain function. CONCLUSIONS: Our data provided evidence that global HI in preterm ovine fetuses resulted in profound cerebral inflammation and mobilization of the peripheral innate immune system. These inflammatory responses were paralleled by marked injury and functional loss of the preterm brain. Further understanding of the interplay between preterm brain inflammation and activation of the peripheral immune system following global HI will contribute to the development of future therapeutic interventions in preterm HIE.


Asunto(s)
Encéfalo/inmunología , Encéfalo/patología , Movimiento Celular/inmunología , Hipoxia-Isquemia Encefálica/inmunología , Hipoxia-Isquemia Encefálica/patología , Animales , Animales Recién Nacidos , Femenino , Feto/inmunología , Feto/patología , Inmunidad Innata , Microglía/inmunología , Microglía/patología , Embarazo , Ovinos
12.
Brain Behav Immun Health ; 23: 100458, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35647567

RESUMEN

Systemic and cerebral inflammation following antenatal infection (e.g. chorioamnionitis) and dysregulation of the blood brain barrier (BBB) are major risk factors for abnormal neonatal brain development. Administration of multipotent adult progenitor cells (MAPCs) represents an interesting pharmacological strategy as modulator of the peripheral and cerebral immune response and protector of BBB integrity. We studied the immunomodulatory and protective cerebrovascular potential of prenatally administered MAPCs in a preclinical ovine model for antenatal inflammation. Ovine fetuses were intra-amniotically (i.a.) exposed to lipopolysaccharide (LPS) or saline at gestational day 125, followed by the intravenous administration of 1*107 MAPCs or saline at gestational day 127. Circulating inflammation markers were measured. Fetal brains were examined immuno-histochemically post-mortem at gestational day 132. Fetal plasma IL-6 levels were elevated significantly 24 h after LPS administration. In utero systemic MAPC treatment after LPS exposure increased Annexin A1 (ANXA1) expression in the cerebrovascular endothelium, indicating enforcement of BBB integrity, and increased the number of leukocytes at brain barriers throughout the brain. Further characterisation of brain barrier-associated leukocytes showed that monocyte/choroid plexus macrophage (IBA-1+/CD206+) and neutrophil (MPO+) populations predominantly contributed to the LPS-MAPC-induced increase of CD45+cells. In the choroid plexus, the percentage of leukocytes expressing the proresolving mediator ANXA1 tended to be decreased after LPS-induced antenatal inflammation, an effect reversed by systemic MAPC treatment. Accordingly, expression levels of ANXA1 per leukocyte were decreased after LPS and restored after subsequent MAPC treatment. Increased expression of ANXA1 by the cerebrovasculature and immune cells at brain barriers following MAPC treatment in an infectious setting indicate a MAPC driven early defence mechanism to protect the neonatal brain against infection-driven inflammation and potential additional pro-inflammatory insults in the neonatal period.

13.
Stem Cells Transl Med ; 10(1): 57-67, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32985793

RESUMEN

Involvement of the cerebellum in the pathophysiology of hypoxic-ischemic encephalopathy (HIE) in preterm infants is increasingly recognized. We aimed to assess the neuroprotective potential of intravenously administered multipotent adult progenitor cells (MAPCs) in the preterm cerebellum. Instrumented preterm ovine fetuses were subjected to transient global hypoxia-ischemia (HI) by 25 minutes of umbilical cord occlusion at 0.7 of gestation. After reperfusion, two doses of MAPCs were administered intravenously. MAPCs are a plastic adherent bone-marrow-derived population of adult progenitor cells with neuroprotective potency in experimental and clinical studies. Global HI caused marked cortical injury in the cerebellum, histologically indicated by disruption of cortical strata, impeded Purkinje cell development, and decreased dendritic arborization. Furthermore, global HI induced histopathological microgliosis, hypomyelination, and disruption of white matter organization. MAPC treatment significantly prevented cortical injury and region-specifically attenuated white matter injury in the cerebellum following global HI. Diffusion tensor imaging (DTI) detected HI-induced injury and MAPC neuroprotection in the preterm cerebellum. This study has demonstrated in a preclinical large animal model that early systemic MAPC therapy improved structural injury of the preterm cerebellum following global HI. Microstructural improvement was detectable with DTI. These findings support the potential of MAPC therapy for the treatment of HIE and the added clinical value of DTI for the detection of cerebellar injury and the evaluation of cell-based therapy.


Asunto(s)
Células Madre Adultas/trasplante , Asfixia , Cerebelo , Hipoxia-Isquemia Encefálica , Células Madre Multipotentes , Animales , Asfixia/terapia , Imagen de Difusión Tensora , Modelos Animales de Enfermedad , Feto , Humanos , Recién Nacido , Recien Nacido Prematuro , Células Madre Multipotentes/trasplante , Ovinos
14.
Front Pediatr ; 9: 617906, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34123958

RESUMEN

Chorioamnionitis is a major risk factor for preterm birth and an independent risk factor for postnatal morbidity for which currently successful therapies are lacking. Emerging evidence indicates that the timing and duration of intra-amniotic infections are crucial determinants for the stage of developmental injury at birth. Insight into the dynamical changes of organ injury after the onset of chorioamnionitis revealed novel therapeutic windows of opportunity. Importantly, successful development and implementation of therapies in clinical care is currently impeded by a lack of diagnostic tools for early (prenatal) detection and surveillance of intra-amniotic infections. In the current study we questioned whether an intra-amniotic infection could be accurately diagnosed by a specific volatile organic compound (VOC) profile in exhaled breath of pregnant sheep. For this purpose pregnant Texel ewes were inoculated intra-amniotically with Ureaplasma parvum and serial collections of exhaled breath were performed for 6 days. Ureaplasma parvum infection induced a distinct VOC-signature in expired breath of pregnant sheep that was significantly different between day 0 and 1 vs. day 5 and 6. Based on a profile of only 15 discriminatory volatiles, animals could correctly be classified as either infected (day 5 and 6) or not (day 0 and 1) with a sensitivity of 83% and a specificity of 71% and an area under the curve of 0.93. Chemical identification of these distinct VOCs revealed the presence of a lipid peroxidation marker nonanal and various hydrocarbons including n-undecane and n-dodecane. These data indicate that intra-amniotic infections can be detected by VOC analyses of exhaled breath and might provide insight into temporal dynamics of intra-amniotic infection and its underlying pathways. In particular, several of these volatiles are associated with enhanced oxidative stress and undecane and dodecane have been reported as predictive biomarker of spontaneous preterm birth in humans. Applying VOC analysis for the early detection of intra-amniotic infections will lead to appropriate surveillance of these high-risk pregnancies, thereby facilitating appropriate clinical course of action including early treatment of preventative measures for pre-maturity-associated morbidities.

15.
Front Med (Lausanne) ; 8: 614239, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33693012

RESUMEN

Perinatal inflammatory stress is strongly associated with adverse pulmonary outcomes after preterm birth. Antenatal infections are an essential perinatal stress factor and contribute to preterm delivery, induction of lung inflammation and injury, pre-disposing preterm infants to bronchopulmonary dysplasia. Considering the polymicrobial nature of antenatal infection, which was reported to result in diverse effects and outcomes in preterm lungs, the aim was to examine the consequences of sequential inflammatory stimuli on endogenous epithelial stem/progenitor cells and vascular maturation, which are crucial drivers of lung development. Therefore, a translational ovine model of antenatal infection/inflammation with consecutive exposures to chronic and acute stimuli was used. Ovine fetuses were exposed intra-amniotically to Ureaplasma parvum 42 days (chronic stimulus) and/or to lipopolysaccharide 2 or 7 days (acute stimulus) prior to preterm delivery at 125 days of gestation. Pulmonary inflammation, endogenous epithelial stem cell populations, vascular modulators and morphology were investigated in preterm lungs. Pre-exposure to UP attenuated neutrophil infiltration in 7d LPS-exposed lungs and prevented reduction of SOX-9 expression and increased SP-B expression, which could indicate protective responses induced by re-exposure. Sequential exposures did not markedly impact stem/progenitors of the proximal airways (P63+ basal cells) compared to single exposure to LPS. In contrast, the alveolar size was increased solely in the UP+7d LPS group. In line, the most pronounced reduction of AEC2 and proliferating cells (Ki67+) was detected in these sequentially UP + 7d LPS-exposed lambs. A similar sensitization effect of UP pre-exposure was reflected by the vessel density and expression of vascular markers VEGFR-2 and Ang-1 that were significantly reduced after UP exposure prior to 2d LPS, when compared to UP and LPS exposure alone. Strikingly, while morphological changes of alveoli and vessels were seen after sequential microbial exposure, improved lung function was observed in UP, 7d LPS, and UP+7d LPS-exposed lambs. In conclusion, although sequential exposures did not markedly further impact epithelial stem/progenitor cell populations, re-exposure to an inflammatory stimulus resulted in disturbed alveolarization and abnormal pulmonary vascular development. Whether these negative effects on lung development can be rescued by the potentially protective responses observed, should be examined at later time points.

16.
Cells ; 9(8)2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32785181

RESUMEN

With a worldwide incidence of 15 million cases, preterm birth is a major contributor to neonatal mortality and morbidity, and concomitant social and economic burden Preterm infants are predisposed to life-long neurological disorders due to the immaturity of the brain. The risks are inversely proportional to maturity at birth. In the majority of extremely preterm infants (<28 weeks' gestation), perinatal brain injury is associated with exposure to multiple inflammatory perinatal triggers that include antenatal infection (i.e., chorioamnionitis), hypoxia-ischemia, and various postnatal injurious triggers (i.e., oxidative stress, sepsis, mechanical ventilation, hemodynamic instability). These perinatal insults cause a self-perpetuating cascade of peripheral and cerebral inflammation that plays a critical role in the etiology of diffuse white and grey matter injuries that underlies a spectrum of connectivity deficits in survivors from extremely preterm birth. This review focuses on chorioamnionitis and hypoxia-ischemia, which are two important antenatal risk factors for preterm brain injury, and highlights the latest insights on its pathophysiology, potential treatment, and future perspectives to narrow the translational gap between preclinical research and clinical applications.


Asunto(s)
Lesiones Encefálicas/epidemiología , Lesiones Encefálicas/etiología , Corioamnionitis , Hipoxia-Isquemia Encefálica/complicaciones , Nacimiento Prematuro/epidemiología , Nacimiento Prematuro/etiología , Lesiones Encefálicas/tratamiento farmacológico , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Femenino , Edad Gestacional , Humanos , Hipotermia Inducida/métodos , Incidencia , Recién Nacido , Recien Nacido Prematuro , Embarazo , Nacimiento Prematuro/tratamiento farmacológico , Factores de Tiempo
17.
J Clin Med ; 8(2)2019 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-30682787

RESUMEN

Blood-brain barrier (BBB) disruption is associated with hypoxia-ischemia (HI) induced brain injury and life-long neurological pathologies. Treatment options are limited. Recently, we found that mesenchymal stem/stromal cell derived extracellular vesicles (MSC-EVs) protected the brain in ovine fetuses exposed to HI. We hypothesized that Annexin A1 (ANXA1), present in MSC-EVs, contributed to their therapeutic potential by targeting the ANXA1/Formyl peptide receptor (FPR), thereby preventing loss of the BBB integrity. Cerebral ANXA1 expression and leakage of albumin into the fetal ovine brain parenchyma after HI were analyzed by immunohistochemistry. For mechanistic insights, barrier integrity of primary fetal endothelial cells was assessed after oxygen-glucose deprivation (OGD) followed by treatment with MSC-EVs or human recombinant ANXA1 in the presence or absence of FPR inhibitors. Our study revealed that BBB integrity was compromised after HI which was improved by MSC-EVs containing ANXA1. Treatment with these MSC-EVs or ANXA1 improved BBB integrity after OGD, an effect abolished by FPR inhibitors. Furthermore, endogenous ANXA1 was depleted within 24 h after induction of HI in cerebovasculature and ependyma and upregulated 72 h after HI in microglia. Targeting ANXA1/FPR with ANXA1 in the immature brain has great potential in preventing BBB loss and concomitant brain injury following HI.

18.
Sci Rep ; 9(1): 12076, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31427631

RESUMEN

Autologous fat transfer (AFT) is limited by post-operative volume loss due to ischemia-induced cell death in the fat graft. Previous studies have demonstrated that electrical stimulation (ES) promotes angiogenesis in a variety of tissues and cell types. In this study we investigated the effects of ES on the angiogenic potential of adipose-derived stem cells (ASC), important progenitor cells in fat grafts with proven angiogenic potential. Cultured human ASC were electrically stimulated for 72 hours after which the medium of stimulated (ES) and non-stimulated (control) ASC was analysed for angiogenesis-related proteins by protein array and ELISA. The functional effect of ES on angiogenesis was then assessed in vitro and in vivo. Nine angiogenesis-related proteins were detected in the medium of electrically (non-)stimulated ASC and were quantified by ELISA. The pro-angiogenic proteins VEGF and MCP-1 were significantly increased following ES compared to controls, while the anti-angiogenic factor Serpin E1/PAI-1 was significantly decreased. Despite increased levels of anti-angiogenic TSP-1 and TIMP-1, medium of ES-treated ASC significantly increased vessel density, total vessel network length and branching points in chorio-allantoic membrane assays. In conclusion, our proof-of-concept study showed that ES increased the angiogenic potential of ASC both in vitro and in vivo.


Asunto(s)
Células Madre Mesenquimatosas/citología , Morfogénesis/efectos de la radiación , Neovascularización Fisiológica/efectos de la radiación , Trasplantes/crecimiento & desarrollo , Adipocitos/efectos de la radiación , Animales , Apoptosis/genética , Apoptosis/efectos de la radiación , Diferenciación Celular/efectos de la radiación , Células Cultivadas , Embrión de Pollo , Medios de Cultivo Condicionados/farmacología , Estimulación Eléctrica , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Humanos , Células Madre Mesenquimatosas/efectos de la radiación , Morfogénesis/genética , Neovascularización Fisiológica/fisiología , Células Madre/efectos de la radiación , Trasplantes/efectos de la radiación
19.
PLoS One ; 13(4): e0195978, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29659625

RESUMEN

INTRODUCTION: The inconclusive clinical results for ST-waveform analysis (STAN) in detecting fetal hypoxemia may be caused by the signal processing of the STAN-device itself. We assessed the performance of a clinical STAN device in signal processing and in detecting hypoxemia in a fetal sheep model exposed to prolonged umbilical cord occlusion (UCO). METHODS: Eight fetal lambs were exposed to 25 minutes of UCO. ECG recordings were analyzed during a baseline period and during UCO. STAN-event rates and timing of episodic T/QRS rise, baseline T/QRS rise and the occurrence of biphasic ST-waveforms, as well as signal loss, were assessed. RESULTS: During baseline conditions of normoxemia, a median of 40 (IQR, 25-70) STAN-events per minute were detected, compared to 10 (IQR, 2-22) during UCO. During UCO STAN-events were detected in five subjects within 10 minutes and in six subjects after 18 minutes, respectively. Two subjects did not generate any STAN-event during UCO. Biphasic ST event rate was reduced during UCO (median 0, IQR 0-5), compared to baseline (median 32, IQR, 6-55). ST-waveforms could not be assessed in 62% of the recording time during UCO, despite a good quality of the ECG signal. CONCLUSIONS: The STAN device showed limitations in detecting hypoxemia in fetal sheep after prolonged UCO. The STAN device produced high false positive event rates during baseline and did not detect T/QRS changes adequately after prolonged fetal hypoxemia. During 14% of baseline and 62% of the UCO period, the STAN-device could not process the ECG signal, despite its good quality. Resolving these issues may improve the clinical performance of the STAN device.


Asunto(s)
Electrocardiografía , Hipoxia Fetal/etiología , Hipoxia Fetal/fisiopatología , Feto , Estrés Fisiológico , Animales , Análisis de los Gases de la Sangre , Presión Sanguínea , Femenino , Frecuencia Cardíaca Fetal , Masculino , Embarazo , Ovinos
20.
Stem Cells Transl Med ; 5(6): 754-63, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27160705

RESUMEN

UNLABELLED: Preterm neonates are susceptible to perinatal hypoxic-ischemic brain injury, for which no treatment is available. In a preclinical animal model of hypoxic-ischemic brain injury in ovine fetuses, we have demonstrated the neuroprotective potential of systemically administered mesenchymal stromal cells (MSCs). The mechanism of MSC treatment is unclear but suggested to be paracrine, through secretion of extracellular vesicles (EVs). Therefore, we investigated in this study the protective effects of mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) in a preclinical model of preterm hypoxic-ischemic brain injury. Ovine fetuses were subjected to global hypoxia-ischemia by transient umbilical cord occlusion, followed by in utero intravenous administration of MSC-EVs. The therapeutic effects of MSC-EV administration were assessed by analysis of electrophysiological parameters and histology of the brain. Systemic administration of MSC-EVs improved brain function by reducing the total number and duration of seizures, and by preserving baroreceptor reflex sensitivity. These functional protections were accompanied by a tendency to prevent hypomyelination. Cerebral inflammation remained unaffected by the MSC-EV treatment. Our data demonstrate that MSC-EV treatment might provide a novel strategy to reduce the neurological sequelae following hypoxic-ischemic injury of the preterm brain. Our study results suggest that a cell-free preparation comprising neuroprotective MSC-EVs could substitute MSCs in the treatment of preterm neonates with hypoxic-ischemic brain injury, thereby circumventing the potential risks of systemic administration of living cells. SIGNIFICANCE: Bone marrow-derived mesenchymal stromal cells (MSCs) show promise in treating hypoxic-ischemic injury of the preterm brain. Study results suggest administration of extracellular vesicles, rather than intact MSCs, is sufficient to exert therapeutic effects and avoids potential concerns associated with administration of living cells. The therapeutic efficacy of systemically administered mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) on hypoxia-ischemia-induced injury was assessed in the preterm ovine brain. Impaired function and structural injury of the fetal brain was improved following global hypoxia-ischemia. A cell-free preparation of MSC-EVs could substitute for the cellular counterpart in the treatment of preterm neonates with hypoxic-ischemic brain injury. This may open new clinical applications for "off-the-shelf" interventions with MSC-EVs.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Hipoxia-Isquemia Encefálica/terapia , Inflamación/terapia , Células Madre Mesenquimatosas/metabolismo , Animales , Encéfalo/fisiopatología , Lesiones Encefálicas/fisiopatología , Lesiones Encefálicas/terapia , Proliferación Celular , Modelos Animales de Enfermedad , Vesículas Extracelulares/metabolismo , Feto , Humanos , Hipoxia-Isquemia Encefálica/fisiopatología , Inflamación/fisiopatología , Células Madre Mesenquimatosas/citología , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA