RESUMEN
Cerebellar-brain inhibition (CBI) is a transcranial magnetic stimulation (TMS) paradigm indexing excitability of cerebellar projections to motor cortex (M1). Stimulation involved with CBI is often considered to be uncomfortable, and alternative ways to index connectivity between cerebellum and the cortex would be valuable. We therefore sought to assess the utility of electroencephalography in conjunction with TMS (combined TMS-EEG) to record the response to CBI. A total of 33 volunteers (25.7 ± 4.9 years, 20 females) participated across three experiments. These investigated EEG responses to CBI induced with a figure-of-eight (F8; experiment 1) or double cone (DC; experiment 2) conditioning coil over cerebellum, in addition to multisensory sham stimulation (experiment 3). Both F8 and DC coils suppressed early TMS-evoked EEG potentials (TEPs) produced by TMS to M1 (P < 0.05). Furthermore, the TEP produced by CBI stimulation was related to the motor inhibitory response to CBI recorded in a hand muscle (P < 0.05), but only when using the DC coil. Multisensory sham stimulation failed to modify the M1 TEP. Cerebellar conditioning produced changes in the M1 TEP that were not apparent following sham stimulation, and that were related to the motor inhibitory effects of CBI. Our findings therefore suggest that it is possible to index the response to CBI using TMS-EEG. In addition, while both F8 and DC coils appear to recruit cerebellar projections, the nature of these may be different.