Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
BMC Genomics ; 24(1): 449, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37558985

RESUMEN

BACKGROUND: For Asian seabass (Lates calcarifer, Bloch 1790) cultured at sea cages various aquatic pathogens, complex environmental and stress factors are considered as leading causes of disease, causing tens of millions of dollars of annual economic losses. Over the years, we conducted farm-based challenges by exposing Asian seabass juveniles to complex natural environmental conditions. In one of these challenges, we collected a total of 1,250 fish classified as either 'sensitive' or 'robust' individuals during the 28-day observation period. RESULTS: We constructed a high-resolution linkage map with 3,089 SNPs for Asian seabass using the double digest Restriction-site Associated DNA (ddRAD) technology and a performed a search for Quantitative Trait Loci (QTL) associated with robustness. The search detected a major genome-wide significant QTL for increased robustness in pathogen-infected marine environment on linkage group 11 (ASB_LG11; 88.9 cM to 93.6 cM) with phenotypic variation explained of 81.0%. The QTL was positioned within a > 800 kb genomic region located at the tip of chromosome ASB_LG11 with two Single Nucleotide Polymorphism markers, R1-38468 and R1-61252, located near to the two ends of the QTL. When the R1-61252 marker was validated experimentally in a different mass cross population, it showed a statistically significant association with increased robustness. The majority of thirty-six potential candidate genes located within the QTL have known functions related to innate immunity, stress response or disease. By utilizing this ddRAD-based map, we detected five mis-assemblies corresponding to four chromosomes, namely ASB_LG8, ASB_LG9, ASB_LG15 and ASB_LG20, in the current Asian seabass reference genome assembly. CONCLUSION: According to our knowledge, the QTL associated with increased robustness is the first such finding from a tropical fish species. Depending on further validation in other stocks and populations, it might be potentially useful for selecting robust Asian seabass lines in selection programs.


Asunto(s)
Perciformes , Sitios de Carácter Cuantitativo , Animales , Mapeo Cromosómico , Perciformes/genética , Cromosomas , Genómica , Polimorfismo de Nucleótido Simple , Ligamiento Genético
2.
Hum Mol Genet ; 29(23): 3765-3780, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33276371

RESUMEN

Neurexins are presynaptic transmembrane proteins that control synapse activity and are risk factors for autism spectrum disorder. Zebrafish, a popular model for behavioral studies, has six neurexin genes, but their functions in embryogenesis and behavior remain largely unknown. We have previously reported that nrxn2a is aberrantly spliced and specifically dysregulated in motor neurons (MNs) in models of spinal muscular atrophy. In this study, we generated nrxn2aa-/- mutants by CRISPR/Cas9 to understand nrxn2aa function at the zebrafish neuromuscular junction (NMJ) and to determine the effects of its deficiency on adult behavior. Homozygous mutant embryos derived from heterozygous parents did not show obvious defects in axon outgrowth or synaptogenesis of MNs. In contrast, maternal-zygotic (MZ) nrxn2aa-/- mutants displayed extensively branched axons and defective MNs, suggesting a cell-autonomous role for maternally provided nrxn2aa in MN development. Analysis of the NMJs revealed enlarged choice points in MNs of mutant larvae and reduced co-localization of pre- and post-synaptic terminals, indicating impaired synapse formation. Severe early NMJ defects partially recovered in late embryos when mutant transcripts became strongly upregulated. Ultimately, however, the induced defects resulted in muscular atrophy symptoms in adult MZ mutants. Zygotic homozygous mutants developed normally but displayed increased anxiety at adult stages. Together, our data demonstrate an essential role for maternal nrxn2aa in NMJ synapse establishment, while zygotic nrxn2aa expression appears dispensable for synapse maintenance. The viable nrxn2aa-/- mutant furthermore serves as a novel model to study how an increase in anxiety-like behaviors impacts other deficits.


Asunto(s)
Ansiedad/patología , Orientación del Axón , Regulación del Desarrollo de la Expresión Génica , Neuronas Motoras/patología , Proteínas del Tejido Nervioso/deficiencia , Neurogénesis , Proteínas de Pez Cebra/deficiencia , Animales , Ansiedad/etiología , Ansiedad/metabolismo , Sistemas CRISPR-Cas , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/genética , Pez Cebra , Proteínas de Pez Cebra/genética
3.
Environ Res ; 186: 109601, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32371278

RESUMEN

Accumulating evidence shows that environmental changes can affect population sex ratios through epigenetic regulation of gene expression in species where sex depends on both genetic and environmental cues. Sometimes, altered sex ratios persist in the next generation even when the environmental cue is no longer present (a multigenerational effect). However, evidence of transgenerational effects (i.e., beyond the first non-exposed generation), which tend to be paternally transmitted, is scarce and a matter of debate. Here, we used the AB strain of zebrafish, where sex depends on both genetic and environmental influences, to study possible multi- (to the F1) and transgenerational (to the F2) effects of elevated temperature during the critical period of sex differentiation. From eight initial different families, five were selected in order to capture sufficient variation between the sex ratio of the control group (28 °C) and the group exposed to elevated (35 °C) temperature only at the parental (P) generation. Results showed a consistent increase in the proportion of males in the P generation in all five families as a result of heat treatment. Sex ratios were then determined in the F1 and F2 offspring derived from both above groups, which were all raised at 28 °C. A persisting male-skewed sex ratio in the 35°C-derived, unexposed offspring of the F1 generation was observed in three families, denoting family-dependent multigenerational effects. However, no transgenerational effects were observed in the F2 generation of any family. DNA methylation was also assessed in the testis of P, F1 and F2 males derived from exposed and non-exposed fathers and grandfathers. DNA methylation was significantly decreased only in the testis of the 35°C-derived males in the F1 generation but not of the F2 generation and, surprisingly, neither in the 35°C-exposed males of the P generation. Taken together, our results show great interfamily variation, not only in sex ratio response to elevated temperature, but also on its multigenerational effects, denoting a strong influence of genetics. Alterations in the testicular epigenome in F1 males calls for attention to possible, previously unnoticed, effects of temperature in the unexposed offspring of heat-exposed parents in a global warming scenario.


Asunto(s)
Razón de Masculinidad , Pez Cebra , Animales , Epigénesis Genética , Epigenoma , Masculino , Temperatura , Testículo , Pez Cebra/genética
4.
Antonie Van Leeuwenhoek ; 113(6): 737-752, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32080799

RESUMEN

Outbreaks of diseases in farmed fish remain a recurring problem despite the development of vaccines and improved hygiene standards on aquaculture farms. One commonly observed bacterial disease in tropical aquaculture of the South-East Asian region is tenacibaculosis, which is attributed to members of the genus Tenacibaculum (family Flavobacteriaceae, phylum Bacteroidetes), most notably Tenacibaculum maritimum. The impact of tenacibaculosis on the fish microbiota remains poorly understood. In this study, we analysed the microbiota of different tissues of commercially reared Asian seabass (Lates calcarifer) that showed symptoms of tenacibaculosis and compared the microbial communities to those of healthy and experimentally infected fish that were exposed to diseased farmed fish. The relative abundance of Tenacibaculum species in experimentally infected fish was significantly lower than in commercially reared diseased fish and revealed a higher prevalence of different Tenacibaculum species. One isolated strain, TLL-A2T, shares 98.7% 16S rRNA gene identity with Tenacibaculum mesophilum DSM 13764T. The genome of strain TLL-A2T was sequenced and compared to that of T. mesophilum DSM 13764T. Analysis of average nucleotide identity and comparative genome analysis revealed only 92% identity between T. mesophilum DSM 13764T and strain TLL-A2T and differences between the two strains in predicted carbohydrate activating enzymes respectively. Phenotypic comparison between strain TLL-A2T and T. mesophilum DSM 13764T indicated additional differences, such as growth response at different salt concentrations. Based on molecular and phenotypic differences, strain TLL-A2T (=DSM 106434T, KCTC 62393T) is proposed as the type strain of Tenacibaculum singaporense sp. nov.


Asunto(s)
Lubina/microbiología , Enfermedades de los Peces/microbiología , Microbiota , Tenacibaculum , Animales , Acuicultura , Peces , Flavobacteriaceae/clasificación , Infecciones por Flavobacteriaceae/microbiología , Infecciones por Flavobacteriaceae/patología , Genes Bacterianos , Genoma Bacteriano , Perciformes/microbiología , Fenotipo , Filogenia , ARN Ribosómico 16S/genética , Tenacibaculum/clasificación , Tenacibaculum/genética , Tenacibaculum/crecimiento & desarrollo , Tenacibaculum/aislamiento & purificación
5.
Proc Natl Acad Sci U S A ; 114(6): E941-E950, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28115725

RESUMEN

Understanding environmental influences on sex ratios is important for the study of the evolution of sex-determining mechanisms and for evaluating the effects of global warming and chemical pollution. Fishes exhibit sexual plasticity, but the underlying mechanisms of environmental effects on their reproduction are unclear even in the well-established teleost research model, the zebrafish. Here we established the conditions to study the effects of elevated temperature on zebrafish sex. We showed that sex ratio response to elevated temperature is family-specific and typically leads to masculinization (female-to-male sex reversal), resulting in neomales. These results uncovered genotype-by-environment interactions that support a polygenic sex determination system in domesticated (laboratory) zebrafish. We found that some heat-treated fish had gene expression profiles similar to untreated controls of the same sex, indicating that they were resistant to thermal effects. Further, most neomales had gonadal transcriptomes similar to that of regular males. Strikingly, we discovered heat-treated females that displayed a normal ovarian phenotype but with a "male-like" gonadal transcriptome. Such major transcriptomic reprogramming with preserved organ structure has never been reported. Juveniles were also found to have a male-like transcriptome shortly after exposure to heat. These findings were validated by analyzing the expression of genes and signaling pathways associated with sex differentiation. Our results revealed a lasting thermal effect on zebrafish gonads, suggesting new avenues for detection of functional consequences of elevated temperature in natural fish populations in a global warming scenario.


Asunto(s)
Gónadas/metabolismo , Calor , Diferenciación Sexual/genética , Transcriptoma , Pez Cebra/genética , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Ontología de Genes , Gónadas/embriología , Gónadas/crecimiento & desarrollo , Masculino , Modelos Animales , Razón de Masculinidad , Temperatura , Testículo/embriología , Testículo/crecimiento & desarrollo , Testículo/metabolismo , Proteínas de Pez Cebra/genética
7.
PLoS Genet ; 12(4): e1005954, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27082250

RESUMEN

We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics.


Asunto(s)
Lubina/genética , Mapeo Cromosómico , Animales , Lubina/clasificación , Genoma , Hibridación Fluorescente in Situ , Filogenia
8.
Biol Reprod ; 90(2): 45, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24174574

RESUMEN

Zebrafish males undergo a "juvenile ovary-to-testis" gonadal transformation process. Several genes, including nuclear receptor subfamily 5, group A (nr5a) and anti-Müllerian hormone (amh), and pathways such as Tp53-mediated germ-cell apoptosis have been implicated in zebrafish testis formation. However, our knowledge of the regulation of this complex process is incomplete, and much remains to be investigated about the molecular pathways and network of genes that control it. Using a microarray-based analysis of transforming zebrafish male gonads, we demonstrated that their transcriptomes undergo transition from an ovary-like pattern to an ovotestis to a testis-like profile. Microarray results also validated the previous histological and immunohistochemical observation that there is high variation in the duration and extent of commitment to the juvenile ovary phase among individuals. Interestingly, global gene expression profiling of diverging zebrafish juvenile ovaries and transforming ovotestes revealed that some members of the canonical Wnt/beta-catenin signaling pathway were differentially expressed between these two phases. To investigate whether Wnt/beta-catenin signaling plays a role in zebrafish gonad differentiation, we used the Tg (hsp70l:dkk1b-GFP)w32 line to inhibit Wnt/beta-catenin signaling during gonad differentiation. Activation of dkk1b-GFP expression by heat shock resulted in an increased proportion of males and corresponding decrease in gonadal aromatase gene (cyp19a1a) expression. The Wnt target gene, lymphocyte enhancer binding factor 1 (lef1), was also down-regulated in the process. Together, these results provide the first functional evidence that, similarly to mammals, Wnt/beta-catenin signaling is a "pro-female" pathway that regulates gonad differentiation in zebrafish.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Gónadas/embriología , Diferenciación Sexual/genética , Vía de Señalización Wnt/fisiología , Pez Cebra , Animales , Trastornos del Desarrollo Sexual/genética , Trastornos del Desarrollo Sexual/veterinaria , Femenino , Perfilación de la Expresión Génica , Gónadas/crecimiento & desarrollo , Gónadas/metabolismo , Masculino , Análisis por Micromatrices , Ovario/embriología , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Testículo/embriología , Testículo/crecimiento & desarrollo , Testículo/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
9.
Reprod Biol Endocrinol ; 12: 5, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24405829

RESUMEN

BACKGROUND: The Asian seabass (Lates calcarifer) is a protandrous hermaphrodite that typically matures as a male at approximately 2-4 years of age and then changes sex in subsequent years. Although several sexual maturation stages have been described histologically for both testis and ovary, the underlying gene expression profiles remain lacking. The development of a gene expression platform is therefore necessary to improve our understanding of the gonad development of this cultured teleost species. METHODS: Thirty Asian seabass gonads were collected from farms in Singapore, examined histologically and staged according to their sex and gonadal maturation status. Partial coding sequences of 24 sex-related genes were cloned using degenerate primers and were sequenced. Additional 13 cDNA sequences were obtained through next-generation sequencing. A real-time qPCR was then performed using the microfluidic-based Fluidigm 48.48 Dynamic arrays. RESULTS: We obtained 17 ovaries and 13 testes at various stages of sexual maturation. Of the 37 genes that were tested, 32 (86%) showed sexually dimorphic expression. These genes included sex-related genes, sox9, wt1, amh, nr5a2, dmrt1 and nr0b1, which showed testis-enhanced expression similar to other vertebrate species. Known male- and female-enhanced germ cells markers, which were established from studies in other species, similarly showed testis- and ovary-enhanced expression, respectively, in the Asian seabass. Three pro-Wnt signaling genes were also upregulated in the ovary, consistent with existing studies that suggested the role of Wnt signaling in ovarian differentiation in teleosts and mammals. The expression patterns of genes involved in steroidogenesis, retinoic acid metabolism, apoptosis and NF-κB signaling were also described. We were able to classify gonads according to sex and gonadal maturation stages, based on their small-scale transcriptomic profiles, and to uncover a wide variation in expression profiles among individuals of the same sex. CONCLUSIONS: The analysis of a selected set of genes related to reproduction and in sufficient number of individuals using a qPCR array can elucidate new insights into the molecular mechanisms involved in Asian seabass gonad development. Given the conservation of gene expression patterns found in this study, these insights may also help us draw parallels with other teleosts.


Asunto(s)
Lubina/genética , Ovario/fisiología , Diferenciación Sexual , Testículo/fisiología , Transcriptoma/fisiología , Animales , Lubina/crecimiento & desarrollo , Femenino , Gónadas/fisiología , Masculino
10.
NPJ Biofilms Microbiomes ; 10(1): 11, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374184

RESUMEN

Studying the gut microbes of marine fishes is an important part of conservation as many fish species are increasingly threatened by extinction. The gut microbiota of only a small fraction of the more than 32,000 known fish species has been investigated. In this study we analysed the intestinal digesta microbiota composition of more than 50 different wild fish species from tropical waters. Our results show that the fish harbour intestinal digesta microbiota that are distinct from that of the surrounding water and that location, domestication status, and host intrinsic factors are strongly associated with the microbiota composition. Furthermore, we show that the vast majority (~97%) of the fish-associated microorganisms do not have any cultured representative. Considering the impact of the microbiota on host health and physiology, these findings underpin the call to also preserve the microbiota of host species, especially those that may be exposed to habitat destruction.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Agua , Peces
11.
Sci Data ; 11(1): 540, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796485

RESUMEN

Amongst fishes, zebrafish (Danio rerio) has gained popularity as a model system over most other species and while their value as a model is well documented, their usefulness is limited in certain fields of research such as behavior. By embracing other, less conventional experimental organisms, opportunities arise to gain broader insights into evolution and development, as well as studying behavioral aspects not available in current popular model systems. The anabantoid paradise fish (Macropodus opercularis), an "air-breather" species has a highly complex behavioral repertoire and has been the subject of many ethological investigations but lacks genomic resources. Here we report the reference genome assembly of M. opercularis using long-read sequences at 150-fold coverage. The final assembly consisted of 483,077,705 base pairs (~483 Mb) on 152 contigs. Within the assembled genome we identified and annotated 20,157 protein coding genes and assigned ~90% of them to orthogroups.


Asunto(s)
Peces , Genoma , Animales , Peces/genética
12.
J Biol Chem ; 287(45): 37926-38, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22988238

RESUMEN

Testis differentiation in zebrafish involves juvenile ovary to testis transformation initiated by an apoptotic wave. The molecular regulation of this transformation process is not fully understood. NF-κB is activated at an early stage of development and has been shown to interact with steroidogenic factor-1 in mammals, leading to the suppression of anti-Müllerian hormone (Amh) gene expression. Because steroidogenic factor-1 and Amh are important for proper testis development, NF-κB-mediated induction of anti-apoptotic genes could, therefore, also play a role in zebrafish gonad differentiation. The aim of this study was to examine the potential role of NF-κB in zebrafish gonad differentiation. Exposure of juvenile zebrafish to heat-killed Escherichia coli activated the NF-κB pathways and resulted in an increased ratio of females from 30 to 85%. Microarray and quantitative real-time-PCR analysis of gonads showed elevated expression of NF-κB-regulated genes. To confirm the involvement of NF-κB-induced anti-apoptotic effects, zebrafish were treated with sodium deoxycholate, a known inducer of NF-κB or NF-κB activation inhibitor (NAI). Sodium deoxycholate treatment mimicked the effect of heat-killed bacteria and resulted in an increased proportion of females from 25 to 45%, whereas the inhibition of NF-κB using NAI resulted in a decrease in females from 45 to 20%. This study provides proof for an essential role of NF-κB in gonadal differentiation of zebrafish and represents an important step toward the complete understanding of the complicated process of sex differentiation in this species and possibly other cyprinid teleosts as well.


Asunto(s)
FN-kappa B/metabolismo , Ovario/crecimiento & desarrollo , Testículo/crecimiento & desarrollo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Western Blotting , Línea Celular , Ácido Desoxicólico/farmacología , Escherichia coli/inmunología , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Calor , Masculino , Modelos Genéticos , FN-kappa B/antagonistas & inhibidores , FN-kappa B/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Ovario/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Diferenciación Sexual/efectos de los fármacos , Diferenciación Sexual/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Testículo/metabolismo , Transcriptoma/genética , Transcriptoma/inmunología , Pez Cebra/genética , Pez Cebra/inmunología , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética
13.
Theriogenology ; 205: 106-113, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37116410

RESUMEN

African catfish (Clarias gariepinus) is a promising food fish species with significant potential and growing mass of production in freshwater aquaculture. Male African catfish possess improved production characteristics over females, therefore the use of monosex populations could be advantageous for aquaculture production. However, our knowledge about the sex determination mechanism of this species is still limited and controversial. A previously isolated male-specific DNA marker (CgaY1) was validated using offspring groups from targeted crosses (n = 630) and it was found to predict the sex of 608 individuals correctly (96.43% accuracy). Using the proportion of recombinants, we estimated the average genetic distance between the potential sex determination locus and the sex-specific marker to be 3.57 cM. As an earlier study suggested that both XX/XY and ZZ/ZW systems coexist in this species, we tested the applicability of their putative 'moderately sex-linked loci' and found that no sex-specific amplification could be detected for any of them. In addition, temperature-induced masculinization suggested by others was also tested, but no such effect was detected in our stocks when the published parameters were used for heat treatment. Altogether, our results support an exclusive XX/XY sex determination system in our African catfish stock and indicate a good potential for the future use of this male-specific DNA marker in research and commercial production.


Asunto(s)
Bagres , Femenino , Masculino , Animales , Bagres/genética , Marcadores Genéticos , Hungría , Acuicultura
14.
bioRxiv ; 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37609174

RESUMEN

Over the decades, a small number of model species, each representative of a larger taxa, have dominated the field of biological research. Amongst fishes, zebrafish (Danio rerio) has gained popularity over most other species and while their value as a model is well documented, their usefulness is limited in certain fields of research such as behavior. By embracing other, less conventional experimental organisms, opportunities arise to gain broader insights into evolution and development, as well as studying behavioral aspects not available in current popular model systems. The anabantoid paradise fish (Macropodus opercularis), an "air-breather" species from Southeast Asia, has a highly complex behavioral repertoire and has been the subject of many ethological investigations, but lacks genomic resources. Here we report the reference genome assembly of Macropodus opercularis using long-read sequences at 150-fold coverage. The final assembly consisted of ≈483 Mb on 152 contigs. Within the assembled genome we identified and annotated 20,157 protein coding genes and assigned ≈90% of them to orthogroups. Completeness analysis showed that 98.5% of the Actinopterygii core gene set (ODB10) was present as a complete ortholog in our reference genome with a further 1.2 % being present in a fragmented form. Additionally, we cloned multiple genes important during early development and using newly developed in situ hybridization protocols, we showed that they have conserved expression patterns.

15.
Cell Death Dis ; 13(4): 363, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-35436990

RESUMEN

RecQ helicases-also known as the "guardians of the genome"-play crucial roles in genome integrity maintenance through their involvement in various DNA metabolic pathways. Aside from being conserved from bacteria to vertebrates, their importance is also reflected in the fact that in humans impaired function of multiple RecQ helicase orthologs are known to cause severe sets of problems, including Bloom, Werner, or Rothmund-Thomson syndromes. Our aim was to create and characterize a zebrafish (Danio rerio) disease model for Bloom syndrome, a recessive autosomal disorder. In humans, this syndrome is characterized by short stature, skin rashes, reduced fertility, increased risk of carcinogenesis, and shortened life expectancy brought on by genomic instability. We show that zebrafish blm mutants recapitulate major hallmarks of the human disease, such as shortened lifespan and reduced fertility. Moreover, similarly to other factors involved in DNA repair, some functions of zebrafish Blm bear additional importance in germ line development, and consequently in sex differentiation. Unlike fanc genes and rad51, however, blm appears to affect its function independent of tp53. Therefore, our model will be a valuable tool for further understanding the developmental and molecular attributes of this rare disease, along with providing novel insights into the role of genome maintenance proteins in somatic DNA repair and fertility.


Asunto(s)
Síndrome de Bloom , Animales , Síndrome de Bloom/genética , Células Germinativas/metabolismo , Longevidad/genética , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
16.
Front Genet ; 12: 506754, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33968125

RESUMEN

Due to the steadily increasing need for seafood and the plateauing output of fisheries, more fish need to be produced by aquaculture production. In parallel with the improvement of farming methods, elite food fish lines with superior traits for production must be generated by selection programs that utilize cutting-edge tools of genomics. The purpose of this review is to provide a historical overview and status report of a selection program performed on a catadromous predator, the Asian seabass (Lates calcarifer, Bloch 1790) that can change its sex during its lifetime. We describe the practices of wet lab, farm and lab in detail by focusing onto the foundations and achievements of the program. In addition to the approaches used for selection, our review also provides an inventory of genetic/genomic platforms and technologies developed to (i) provide current and future support for the selection process; and (ii) improve our understanding of the biology of the species. Approaches used for the improvement of terrestrial farm animals are used as examples and references, as those processes are far ahead of the ones used in aquaculture and thus they might help those working on fish to select the best possible options and avoid potential pitfalls.

17.
Methods Mol Biol ; 2218: 49-60, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33606222

RESUMEN

The regulation of reproduction in zebrafish, the prime model of fish research, is not fully understood. An efficient tool to gain a better understanding of this complicated process is utilization of severely sex-biased families or groups. Here, we describe a method for partial depletion of primordial germ cells (PGCs) that leads to eventual masculinization of zebrafish. The technique is based on injecting early embryos with diluted morpholino oligonucleotides that temporarily interfere with the production of Dead end (Dnd), an RNA-binding protein essential for PGC survival. In addition, we also propose the use of eviscerated trunk, as a suitable alternative for examining gonadal expression in juvenile zebrafish.


Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Células Germinativas/efectos de los fármacos , Morfolinos/administración & dosificación , Oligonucleótidos/administración & dosificación , Animales , Embrión no Mamífero/metabolismo , Femenino , Células Germinativas/metabolismo , Gónadas/efectos de los fármacos , Gónadas/metabolismo , Inyecciones , Masculino , Proteínas de Unión al ARN/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
18.
Genes (Basel) ; 11(6)2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32560567

RESUMEN

The intensity of the merle pattern is determined by the length of the poly(A) tail of a repeat element which has been inserted into the boundary of intron 10 and exon 11 of the PMEL17 locus in reverse orientation. This poly(A) tail behaves as a microsatellite, and due to replication slippage, longer and shorter alleles of it might be generated during cell divisions. The length of the poly(A) tail regulates the splicing mechanism. In the case of shorter tails, the removal of intron 10 takes place at the original splicing, resulting in a normal premelanosome protein (PMEL). Longer tails generate larger insertions, forcing splicing to a cryptic splice site, thereby coding for an abnormal PMEL protein, which is unable to form the normal fibrillar matrix of the eumelanosomes. Thus, eumelanin deposition ensuring the dark color formation is reduced. In summary, the longer the poly(A) tail, the lighter the coat color intensity of the melanocytes. These mutations can occur in the somatic cells and the resulting cell clones will shape the merle pattern of the coat. When they take place in the germ line, they occasionally produce offspring with unexpected color variations which are different from those of their parents.


Asunto(s)
Color del Cabello/genética , Empalme del ARN/genética , Antígeno gp100 del Melanoma/genética , Animales , Perros , Antecedentes Genéticos , Melaninas/biosíntesis , Melaninas/genética , Melanocitos/metabolismo , Mutación/genética , Sitios de Empalme de ARN/genética
19.
Insects ; 11(8)2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32751511

RESUMEN

Applying instrumental insemination in closely related honey bee colonies often leads to frequent lethality of offspring causing colony collapse. This is due to the peculiarities of honey bee reproductive biology, where the complementary sex determination (csd) gene drives sex determination within a haplodiploid system. Diploid drones containing homozygous genotypes are lethal. Tracking of csd alleles using molecular markers prevents this unwanted event in closed breeding programs. Our approach described here is based on high throughput sequencing (HTS) that provides more data than traditional molecular techniques and is capable of analysing sources containing multiple alleles, including diploid individuals as the bee queen. The approach combines HTS technique and clipping wings as a minimally invasive method to detect the complementary sex determiner (csd) alleles directly from honey bee queens. Furthermore, it might also be suitable for screening alleles of honey harvested from hives of a closed breeding facility. Data on alleles of the csd gene from different honey bee subspecies are provided. It might contribute to future databases that could potentially be used to track the origin of honey. With the help of tracking csd alleles, more focused crossings will be possible, which could in turn accelerate honey bee breeding programmes targeting increase tolerance against varroosis as well.

20.
Mar Biotechnol (NY) ; 20(1): 10-19, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29204906

RESUMEN

Tilapia is one of most important foodfish species. The low omega-3 to omega-6 fatty acid ratio in freshwater tilapia meat is disadvantageous for human health. Increasing omega-3 content is an important task in breeding to increase the nutritional value of tilapia. However, conventional breeding to increase omega-3 content is difficult and slow. To accelerate the increase of omega-3 through marker-assisted selection (MAS), we conducted QTL mapping for fatty acid contents and profiles in a F2 family of saline tilapia generated by crossing red tilapia and Mozambique tilapia. The total omega-3 content in F2 hybrid tilapia was 2.5 ± 1.0 mg/g, higher than that (2.00 mg/g) in freshwater tilapia. Genotyping by sequencing (GBS) technology was used to discover and genotype SNP markers, and microsatellites were also genotyped. We constructed a linkage map with 784 markers (151 microsatellites and 633 SNPs). The linkage map was 2076.7 cM long and consisted of 22 linkage groups. Significant and suggestive QTL for total lipid content were mapped on six linkage groups (LG3, -4, -6, -8, -13, and -15) and explained 5.8-8.3% of the phenotypic variance. QTL for omega-3 fatty acids were located on four LGs (LG11, -18, -19, and -20) and explained 5.0 to 7.5% of the phenotypic variance. Our data suggest that the total lipid and omega-3 fatty acid content were determined by multiple genes in tilapia. The markers flanking the QTL for omega-3 fatty acids can be used in MAS to accelerate the genetic improvements of these traits in salt-tolerant tilapia.


Asunto(s)
Ácidos Grasos Omega-3/análisis , Ácidos Grasos Omega-3/genética , Sitios de Carácter Cuantitativo/genética , Tilapia/genética , Animales , Cruzamiento , Quimera/genética , Femenino , Genotipo , Lípidos/genética , Masculino , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA