Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Bacteriol ; 200(2)2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29084855

RESUMEN

Sinorhizobium meliloti is a Gram-negative alphaproteobacterium that can enter into a symbiotic relationship with Medicago sativa and Medicago truncatula Previous work determined that a mutation in the tkt2 gene, which encodes a putative transketolase, could prevent medium acidification associated with a mutant strain unable to metabolize galactose. Since the pentose phosphate pathway in S. meliloti is not well studied, strains carrying mutations in either tkt2 and tal, which encodes a putative transaldolase, were characterized. Carbon metabolism phenotypes revealed that both mutants were impaired in growth on erythritol and ribose. This phenotype was more pronounced for the tkt2 mutant strain, which also displayed auxotrophy for aromatic amino acids. Changes in pentose phosphate pathway metabolite concentrations were also consistent with a mutation in either tkt2 or tal The concentrations of metabolites in central carbon metabolism were also found to shift dramatically in strains carrying a tkt2 mutation. While the concentrations of proteins involved in central carbon metabolism did not change significantly under any conditions, the levels of those associated with iron acquisition increased in the wild-type strain with erythritol induction. These proteins were not detected in either mutant, resulting in less observable rhizobactin production in the tkt2 mutant. While both mutants were impaired in succinoglycan synthesis, only the tkt2 mutant strain was unable to establish symbiosis with alfalfa. These results suggest that tkt2 and tal play central roles in regulating the carbon flow necessary for carbon metabolism and the establishment of symbiosis.IMPORTANCESinorhizobium meliloti is a model organism for the study of plant-microbe interactions and metabolism, especially because it effects nitrogen fixation. The ability to derive the energy necessary for nitrogen fixation is dependent on an organism's ability to metabolize carbon efficiently. The pentose phosphate pathway is central in the interconversion of hexoses and pentoses. This study characterizes the key enzymes of the nonoxidative branch of the pentose phosphate pathway by using defined genetic mutations and shows the effects the mutations have on the metabolite profile and on physiological processes such as the biosynthesis of exopolysaccharide, as well as the ability to regulate iron acquisition.


Asunto(s)
Carbono/metabolismo , Mutación , Vía de Pentosa Fosfato/genética , Sinorhizobium meliloti/genética , Proteínas Bacterianas/metabolismo , Eritritol/metabolismo , Medicago sativa/microbiología , Medicago truncatula/microbiología , Fijación del Nitrógeno , Fenotipo , Raíces de Plantas/microbiología , Sinorhizobium meliloti/crecimiento & desarrollo , Sinorhizobium meliloti/metabolismo , Simbiosis , Transcetolasa/genética
2.
Microbiol Resour Announc ; 11(7): e0021622, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35670609

RESUMEN

Here, we report the genome sequences of Rhizobium gallicum M101, Rhizobium sp. strain C104, and Rhizobium sp. strain K102. These bacteria were isolated from three locations in Manitoba, Canada. The M101 genome meets the criteria for R. gallicum based on average nucleotide identity and DNA-DNA hybridization; the genomes of C104 and K102 are below the thresholds to be matched to known type strains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA